Towards AI Search Paradigm
- URL: http://arxiv.org/abs/2506.17188v1
- Date: Fri, 20 Jun 2025 17:42:13 GMT
- Title: Towards AI Search Paradigm
- Authors: Yuchen Li, Hengyi Cai, Rui Kong, Xinran Chen, Jiamin Chen, Jun Yang, Haojie Zhang, Jiayi Li, Jiayi Wu, Yiqun Chen, Changle Qu, Keyi Kong, Wenwen Ye, Lixin Su, Xinyu Ma, Long Xia, Daiting Shi, Jiashu Zhao, Haoyi Xiong, Shuaiqiang Wang, Dawei Yin,
- Abstract summary: We introduce the AI Search Paradigm, a blueprint for next-generation search systems capable of emulating human information processing and decision-making.<n>The paradigm employs a modular architecture of four LLM-powered agents that dynamically adapt to the full spectrum of information needs.<n>By providing an in-depth guide to these components, this work aims to inform the development of trustworthy, adaptive, and scalable AI search systems.
- Score: 42.62890561623222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce the AI Search Paradigm, a comprehensive blueprint for next-generation search systems capable of emulating human information processing and decision-making. The paradigm employs a modular architecture of four LLM-powered agents (Master, Planner, Executor and Writer) that dynamically adapt to the full spectrum of information needs, from simple factual queries to complex multi-stage reasoning tasks. These agents collaborate dynamically through coordinated workflows to evaluate query complexity, decompose problems into executable plans, and orchestrate tool usage, task execution, and content synthesis. We systematically present key methodologies for realizing this paradigm, including task planning and tool integration, execution strategies, aligned and robust retrieval-augmented generation, and efficient LLM inference, spanning both algorithmic techniques and infrastructure-level optimizations. By providing an in-depth guide to these foundational components, this work aims to inform the development of trustworthy, adaptive, and scalable AI search systems.
Related papers
- Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - From Standalone LLMs to Integrated Intelligence: A Survey of Compound Al Systems [6.284317913684068]
Compound Al Systems (CAIS) is an emerging paradigm that integrates large language models (LLMs) with external components, such as retrievers, agents, tools, and orchestrators.<n>Despite growing adoption in both academia and industry, the CAIS landscape remains fragmented, lacking a unified framework for analysis, taxonomy, and evaluation.<n>This survey aims to provide researchers and practitioners with a comprehensive foundation for understanding, developing, and advancing the next generation of system-level artificial intelligence.
arXiv Detail & Related papers (2025-06-05T02:34:43Z) - Dynamic Multi-Agent Orchestration and Retrieval for Multi-Source Question-Answer Systems using Large Language Models [0.0]
We propose a methodology that combines several advanced techniques in Large Language Model (LLM) retrieval to support the development of robust, multi-source question-answer systems.<n>This methodology is designed to integrate information from diverse data sources, through a coordinated multi-agent orchestration and dynamic retrieval approach.<n>Our results indicate that this approach enhances response accuracy and relevance, offering a versatile and scalable framework for developing question-answer systems.
arXiv Detail & Related papers (2024-12-23T20:28:20Z) - Creating an LLM-based AI-agent: A high-level methodology towards enhancing LLMs with APIs [0.0]
Large Language Models (LLMs) have revolutionized various aspects of engineering and science.<n>This thesis serves as a comprehensive guide that elucidates a multi-faceted approach for empowering LLMs with the capability to leverage Application Programming Interfaces (APIs)<n>We propose an on-device architecture that aims to exploit the functionality of carry-on devices by using small models from the Hugging Face community.
arXiv Detail & Related papers (2024-12-17T14:14:04Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks.
We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup.
arXiv Detail & Related papers (2024-08-23T23:11:08Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.