From Standalone LLMs to Integrated Intelligence: A Survey of Compound Al Systems
- URL: http://arxiv.org/abs/2506.04565v1
- Date: Thu, 05 Jun 2025 02:34:43 GMT
- Title: From Standalone LLMs to Integrated Intelligence: A Survey of Compound Al Systems
- Authors: Jiayi Chen, Junyi Ye, Guiling Wang,
- Abstract summary: Compound Al Systems (CAIS) is an emerging paradigm that integrates large language models (LLMs) with external components, such as retrievers, agents, tools, and orchestrators.<n>Despite growing adoption in both academia and industry, the CAIS landscape remains fragmented, lacking a unified framework for analysis, taxonomy, and evaluation.<n>This survey aims to provide researchers and practitioners with a comprehensive foundation for understanding, developing, and advancing the next generation of system-level artificial intelligence.
- Score: 6.284317913684068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compound Al Systems (CAIS) is an emerging paradigm that integrates large language models (LLMs) with external components, such as retrievers, agents, tools, and orchestrators, to overcome the limitations of standalone models in tasks requiring memory, reasoning, real-time grounding, and multimodal understanding. These systems enable more capable and context-aware behaviors by composing multiple specialized modules into cohesive workflows. Despite growing adoption in both academia and industry, the CAIS landscape remains fragmented, lacking a unified framework for analysis, taxonomy, and evaluation. In this survey, we define the concept of CAIS, propose a multi-dimensional taxonomy based on component roles and orchestration strategies, and analyze four foundational paradigms: Retrieval-Augmented Generation (RAG), LLM Agents, Multimodal LLMs (MLLMs), and orchestration-centric architectures. We review representative systems, compare design trade-offs, and summarize evaluation methodologies across these paradigms. Finally, we identify key challenges-including scalability, interoperability, benchmarking, and coordination-and outline promising directions for future research. This survey aims to provide researchers and practitioners with a comprehensive foundation for understanding, developing, and advancing the next generation of system-level artificial intelligence.
Related papers
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey [64.08485471150486]
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings.<n>We systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication.
arXiv Detail & Related papers (2025-03-28T14:08:40Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - Multi-Agent Collaboration Mechanisms: A Survey of LLMs [6.545098975181273]
Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively.<n>This work provides an extensive survey of the collaborative aspect of MASs and introduces a framework to guide future research.
arXiv Detail & Related papers (2025-01-10T19:56:50Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
We propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF)
Our framework distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent.
We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities.
arXiv Detail & Related papers (2024-09-17T17:54:17Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
Large language models (LLMs) have revolutionized the field of artificial intelligence, endowing it with sophisticated language understanding and generation capabilities.
This paper proposes a comprehensive multi-dimensional taxonomy to analyze how autonomous LLM-powered multi-agent systems balance the dynamic interplay between autonomy and alignment.
arXiv Detail & Related papers (2023-10-05T16:37:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.