Comparison of spin-qubit architectures for quantum error-correcting codes
- URL: http://arxiv.org/abs/2506.17190v1
- Date: Fri, 20 Jun 2025 17:45:21 GMT
- Title: Comparison of spin-qubit architectures for quantum error-correcting codes
- Authors: Mauricio GutiƩrrez, Juan S. Rojas-Arias, David Obando, Chien-Yuan Chang,
- Abstract summary: We investigate the performance of two quantum error-correcting codes, the surface code and the Bacon-Shor code, for implementation with spin qubits in silicon.<n>We find that the logical error rate is not limited by memory errors, but rather by gate errors, especially 1- and 2-qubit gate errors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the performance of two quantum error-correcting codes, the surface code and the Bacon-Shor code, for implementation with spin qubits in silicon. In each case, we construct a logical qubit using a planar array of quantum dots, exploring two encoding schemes: one based solely on single-electron Zeeman qubits (Loss-DiVincenzo qubits), and a hybrid approach combining Zeeman and singlet-triplet qubits. For both codes, we evaluate key performance metrics, including logical state preparation fidelity and cycle-level error correction performance, using state-of-the-art experimental parameters. Our results show that the hybrid encoding consistently outperforms the pure Zeeman-qubit implementation. By identifying the dominant error mechanisms that limit quantum error correction performance, our study highlights concrete targets for improving spin qubit hardware and provides a path toward scalable fault-tolerant architectures. In particular, we find that the logical error rate is not limited by memory errors, but rather by gate errors, especially 1- and 2-qubit gate errors.
Related papers
- Approximate Quantum Error Correction with 1D Log-Depth Circuits [0.824969449883056]
We construct quantum error-correcting codes based on one-dimensional, logarithmic-depth random Clifford encoding circuits with a two-layer circuit structure.<n>We show that the error correction inaccuracy decays exponentially with circuit depth, resulting in negligible errors for these logarithmic-depth circuits.
arXiv Detail & Related papers (2025-03-22T12:54:04Z) - Error correction of a logical qubit encoded in a single atomic ion [0.0]
Quantum error correction (QEC) is essential for quantum computers to perform useful algorithms.<n>Recent work has proposed a complementary approach of performing error correction at the single-particle level.<n>Here we demonstrate QEC in a single atomic ion that decreases errors by a factor of up to 2.2 and extends the qubit's useful lifetime by a factor of up to 1.5.
arXiv Detail & Related papers (2025-03-18T05:10:21Z) - Qudit vs. Qubit: Simulated performance of error correction codes in higher dimensions [0.0]
We create and simulate the quantum circuitry for small qudit error correction codes and specifically adapted decoders.<n>We find that the logical error rates of our simulated distance-3 codes would give less average computational errors for the higher dimensional codes.
arXiv Detail & Related papers (2025-02-09T18:47:50Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Optimizing Stabilizer Parities for Improved Logical Qubit Memories [0.8431877864777444]
We study variants of Shor's code that are adept at handling single-axis correlated idling errors.
Even-distance versions of our Shor code variants are decoherence-free subspaces and fully robust to identical and independent coherent idling noise.
arXiv Detail & Related papers (2021-05-11T14:20:15Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Optical demonstration of quantum fault-tolerant threshold [2.6098148548199047]
A major challenge in practical quantum computation is the ineludible errors caused by the interaction of quantum systems with their environment.
Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits, enable correct output of logical qubits under the presence of errors.
Here, we experimentally demonstrate the existence of the threshold in a special fault-tolerant protocol.
arXiv Detail & Related papers (2020-12-16T13:23:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.