Qudit vs. Qubit: Simulated performance of error correction codes in higher dimensions
- URL: http://arxiv.org/abs/2502.05992v1
- Date: Sun, 09 Feb 2025 18:47:50 GMT
- Title: Qudit vs. Qubit: Simulated performance of error correction codes in higher dimensions
- Authors: James Keppens, Quinten Eggerickx, Vukan Levajac, George Simion, Bart Sorée,
- Abstract summary: We create and simulate the quantum circuitry for small qudit error correction codes and specifically adapted decoders.
We find that the logical error rates of our simulated distance-3 codes would give less average computational errors for the higher dimensional codes.
- Score: 0.0
- License:
- Abstract: Qudits can be described by a state vector in a q-dimensional Hilbert space, enabling a more extensive encoding and manipulation of information compared to qubits. This implies that conducting fault tolerant quantum computations using qudits rather than qubits might entail less overhead. We test this hypothesis by creating and simulating the quantum circuitry for small qudit error correction codes and specifically adapted decoders and compare the simulated performance with their qubit counterparts under two different noise models. We introduce an error ratio to quantify the trade-off between logical error rates and the reduction in the number of units required when using qudits. We find that the logical error rates of our simulated distance-3 codes would give less average computational errors for the higher dimensional codes, especially when the decoder can be adapted to correct more hyperedge-type errors.
Related papers
- Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Bounds on Autonomous Quantum Error Correction [3.9119979887528125]
We analyze Markovian autonomous decoders that can be implemented with a wide range of qubit and bosonic error-correcting codes.
For many-body quantum codes, we show that, to achieve error suppression comparable to active error correction, autonomous decoders generally require correction rates that grow with code size.
arXiv Detail & Related papers (2023-08-30T18:00:07Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Matching and maximum likelihood decoding of a multi-round subsystem
quantum error correction experiment [1.2189422792863451]
We perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice.
Full processor can encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements.
We show that the logical error varies depending on the use of a perfect matching decoder.
arXiv Detail & Related papers (2022-03-14T15:44:11Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Exact performance of the five-qubit code with coherent errors [0.0]
We obtain explicit process matrix of the coding maps with a unital error channel for the five-qubit code.
We analytically show how the code affects the average gate infidelity and diamond distance of the error channels.
arXiv Detail & Related papers (2022-03-03T13:28:59Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Simulation of the five-qubit quantum error correction code on
superconducting qubits [0.0]
We propose a circuit based on the minimal distance-3 QEC code, which requires only 5 data qubits and 5 ancilla qubits.
Thanks to its smaller footprint, the proposed code has a lower logical error rate than Surface-17 for similar physical error rates.
arXiv Detail & Related papers (2021-07-14T05:29:59Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.