Post-Training Large Language Models via Reinforcement Learning from Self-Feedback
- URL: http://arxiv.org/abs/2507.21931v1
- Date: Tue, 29 Jul 2025 15:46:26 GMT
- Title: Post-Training Large Language Models via Reinforcement Learning from Self-Feedback
- Authors: Carel van Niekerk, Renato Vukovic, Benjamin Matthias Ruppik, Hsien-chin Lin, Milica Gašić,
- Abstract summary: Large Language Models (LLMs) often produce plausible but poorly-calibrated answers.<n>We present Reinforcement Learning from Self-Feedback (RLSF), a post-training stage that uses the model's own confidence as an intrinsic reward.
- Score: 3.73824942136665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) often produce plausible but poorly-calibrated answers, limiting their reliability on reasoning-intensive tasks. We present Reinforcement Learning from Self-Feedback (RLSF), a post-training stage that uses the model's own confidence as an intrinsic reward, mimicking how humans learn in the absence of external feedback. After a frozen LLM generates several chain-of-thought solutions, we define and compute the confidence of each final answer span and rank the traces accordingly. These synthetic preferences are then used to fine-tune the policy with standard preference optimization, similar to RLHF yet requiring no human labels, gold answers, or externally curated rewards. RLSF simultaneously (i) refines the model's probability estimates -- restoring well-behaved calibration -- and (ii) strengthens step-by-step reasoning, yielding improved performance on arithmetic reasoning and multiple-choice question answering. By turning a model's own uncertainty into useful self-feedback, RLSF affirms reinforcement learning on intrinsic model behaviour as a principled and data-efficient component of the LLM post-training pipeline and warrents further research in intrinsic rewards for LLM post-training.
Related papers
- Beyond Binary Rewards: Training LMs to Reason About Their Uncertainty [59.97939500426759]
This paper describes RLCR, an approach to training reasoning models that jointly improves accuracy and confidence estimation.<n>We show that across diverse datasets, RLCR substantially improves calibration with no loss in accuracy.<n>We also demonstrate that verbalized confidence can be leveraged at test time to improve accuracy and calibration.
arXiv Detail & Related papers (2025-07-22T17:56:01Z) - No Free Lunch: Rethinking Internal Feedback for LLM Reasoning [12.881043910316787]
Reinforcement learning has emerged as a powerful paradigm for post-training large language models (LLMs) to improve reasoning.<n>We investigate an alternative class of methods, Reinforcement Learning from Internal Feedback (RLIF), which relies solely on intrinsic model-derived signals instead of external rewards.
arXiv Detail & Related papers (2025-06-20T17:59:52Z) - Learning to Reason without External Rewards [100.27210579418562]
Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision.<n>We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data.<n>We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal.
arXiv Detail & Related papers (2025-05-26T07:01:06Z) - Bridging Supervised Learning and Reinforcement Learning in Math Reasoning [55.889740979706815]
Reinforcement Learning (RL) has played a central role in the recent surge of math abilities by enabling self-improvement through binary verifier signals.<n>In this work, we propose Negative-aware Fine-Tuning (NFT) -- a supervised approach that enables LLMs to reflect on their failures and improve autonomously with no external teachers.
arXiv Detail & Related papers (2025-05-23T17:17:40Z) - Self-Training Large Language Models with Confident Reasoning [15.260831996769962]
Large language models (LLMs) have shown impressive performance by generating reasoning paths before final answers.<n>We propose a new self-training method, CORE-PO, that fine-tunes LLMs to prefer high-COnfidence REasoning paths through Policy Optimization.<n>Our experiments show that CORE-PO improves the accuracy of outputs on four in-distribution and two out-of-distribution benchmarks, compared to existing self-training methods.
arXiv Detail & Related papers (2025-05-23T04:25:10Z) - Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards [67.86091419220816]
Large Language Models (LLMs) show great promise in complex reasoning.<n>A prevalent issue is superficial self-reflection'', where models fail to robustly verify their own outputs.<n>We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this.
arXiv Detail & Related papers (2025-05-19T17:59:31Z) - Scalable Best-of-N Selection for Large Language Models via Self-Certainty [65.31658824274894]
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models.<n>We propose self-certainty, a novel and efficient metric to estimate response quality without requiring external reward models.<n>Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities.
arXiv Detail & Related papers (2025-02-25T19:08:07Z) - Disentangling Length Bias In Preference Learning Via Response-Conditioned Modeling [87.17041933863041]
Reinforcement Learning from Human Feedback (RLHF) has achieved considerable success in aligning large language models (LLMs)<n>We introduce a $textbfR$esponse-$textbfc$onditioned $textbfB$radley-$textbfT$erry (Rc-BT) model that enhances the model's capability in length bias mitigating and length instruction following.<n>We also propose the Rc-RM and Rc-DPO algorithm to leverage the Rc-BT model for reward modeling and direct policy optimization
arXiv Detail & Related papers (2025-02-02T14:50:25Z) - Reinforcing Thinking through Reasoning-Enhanced Reward Models [6.636512424910708]
Large Language Models (LLMs) exhibit great potential in complex multi-step reasoning through inference-time thinking.<n>LLMs struggle with deciding when to stop thinking due to limited self-awareness about their knowledge boundaries.<n>This work addresses these challenges by distilling the LLM's own reasoning processes into synthetic behavioral data.
arXiv Detail & Related papers (2024-12-31T04:50:15Z) - Insights from the Inverse: Reconstructing LLM Training Goals Through Inverse Reinforcement Learning [6.691759477350243]
Large language models (LLMs) trained with Reinforcement Learning from Human Feedback have demonstrated remarkable capabilities, but their underlying reward functions and decision-making processes remain opaque.<n>This paper introduces a novel approach to interpreting LLMs by applying inverse reinforcement learning (IRL) to recover their implicit reward functions.<n>We conduct experiments on toxicity-aligned LLMs of varying sizes, extracting reward models that achieve up to 85% accuracy in predicting human preferences.
arXiv Detail & Related papers (2024-10-16T12:14:25Z) - Recursive Introspection: Teaching Language Model Agents How to Self-Improve [30.086494067593268]
We develop RISE: Recursive IntroSpEction, an approach for fine-tuning large language models.
Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks.
arXiv Detail & Related papers (2024-07-25T17:35:59Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.