Efficient Quantification of Multimodal Interaction at Sample Level
- URL: http://arxiv.org/abs/2506.17248v1
- Date: Sun, 08 Jun 2025 02:39:25 GMT
- Title: Efficient Quantification of Multimodal Interaction at Sample Level
- Authors: Zequn Yang, Hongfa Wang, Di Hu,
- Abstract summary: We introduce the Lightweight Sample-wise Multimodal Interaction (LSMI) estimator, rigorously grounded in pointwise information theory.<n>We first develop a redundancy estimation framework, employing an appropriate pointwise information measure to quantify this most decomposable interaction.<n>Building upon this, we propose a general interaction estimation method that employs efficient entropy estimation.
- Score: 12.373485315058513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interactions between modalities -- redundancy, uniqueness, and synergy -- collectively determine the composition of multimodal information. Understanding these interactions is crucial for analyzing information dynamics in multimodal systems, yet their accurate sample-level quantification presents significant theoretical and computational challenges. To address this, we introduce the Lightweight Sample-wise Multimodal Interaction (LSMI) estimator, rigorously grounded in pointwise information theory. We first develop a redundancy estimation framework, employing an appropriate pointwise information measure to quantify this most decomposable and measurable interaction. Building upon this, we propose a general interaction estimation method that employs efficient entropy estimation, specifically tailored for sample-wise estimation in continuous distributions. Extensive experiments on synthetic and real-world datasets validate LSMI's precision and efficiency. Crucially, our sample-wise approach reveals fine-grained sample- and category-level dynamics within multimodal data, enabling practical applications such as redundancy-informed sample partitioning, targeted knowledge distillation, and interaction-aware model ensembling. The code is available at https://github.com/GeWu-Lab/LSMI_Estimator.
Related papers
- Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning [71.3533541927459]
We propose a novel data selection paradigm termed Activation Reasoning Potential (RAP)<n>RAP identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning.<n>Our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%.
arXiv Detail & Related papers (2025-06-05T08:40:24Z) - Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.<n>We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.<n>We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.<n>Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - Correlation-Decoupled Knowledge Distillation for Multimodal Sentiment Analysis with Incomplete Modalities [16.69453837626083]
We propose a Correlation-decoupled Knowledge Distillation (CorrKD) framework for the Multimodal Sentiment Analysis (MSA) task under uncertain missing modalities.
We present a sample-level contrastive distillation mechanism that transfers comprehensive knowledge containing cross-sample correlations to reconstruct missing semantics.
We design a response-disentangled consistency distillation strategy to optimize the sentiment decision boundaries of the student network.
arXiv Detail & Related papers (2024-04-25T09:35:09Z) - Neuro-Inspired Information-Theoretic Hierarchical Perception for Multimodal Learning [16.8379583872582]
We develop the Information-Theoretic Hierarchical Perception (ITHP) model, which utilizes the concept of information bottleneck.
We show that ITHP consistently distills crucial information in multimodal learning scenarios, outperforming state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-04-15T01:34:44Z) - Federated Multi-Task Learning on Non-IID Data Silos: An Experimental Study [17.555311732095483]
The FMTL approach consolidates the benefits of Federated Learning (FL) and Multi-Task Learning (MTL)
This paper introduces a novel framework, FMTL-Bench, for systematic evaluation of the FMTL paradigm.
arXiv Detail & Related papers (2024-02-20T10:13:44Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.