論文の概要: MAARTA:Multi-Agentic Adaptive Radiology Teaching Assistant
- arxiv url: http://arxiv.org/abs/2506.17320v1
- Date: Wed, 18 Jun 2025 15:54:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.34621
- Title: MAARTA:Multi-Agentic Adaptive Radiology Teaching Assistant
- Title(参考訳): MAARTA:多言語適応放射線学指導助手
- Authors: Akash Awasthi, Brandon V. Chang, Anh M. Vu, Ngan Le, Rishi Agrawal, Zhigang Deng, Carol Wu, Hien Van Nguyen,
- Abstract要約: マルチエージェントフレームワークであるMAARTA(Multi-Agentic Adaptive Radiology Teaching Assistant)を導入し、視線パターンと放射線学レポートを分析し、パーソナライズされたフィードバックを提供する。
単エージェントモデルとは異なり、MAARTAはエラー複雑性に基づいてエージェントを動的に選択し、適応的で効率的な推論を可能にする。
- 参考スコア(独自算出の注目度): 8.954526882290267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiology students often struggle to develop perceptual expertise due to limited expert mentorship time, leading to errors in visual search and diagnostic interpretation. These perceptual errors, such as missed fixations, short dwell times, or misinterpretations, are not adequately addressed by current AI systems, which focus on diagnostic accuracy but fail to explain how and why errors occur. To address this gap, we introduce MAARTA (Multi-Agentic Adaptive Radiology Teaching Assistant), a multi-agent framework that analyzes gaze patterns and radiology reports to provide personalized feedback. Unlike single-agent models, MAARTA dynamically selects agents based on error complexity, enabling adaptive and efficient reasoning. By comparing expert and student gaze behavior through structured graphs, the system identifies missed findings and assigns Perceptual Error Teacher agents to analyze discrepancies. MAARTA then uses step-by-step prompting to help students understand their errors and improve diagnostic reasoning, advancing AI-driven radiology education.
- Abstract(参考訳): 放射線学の学生は、専門家のメンターシップ時間が限られており、視覚的な探索や診断の解釈の誤りにつながるため、知覚の専門知識の開発に苦慮することが多い。
これらの知覚的エラー(例えば、ミス修正、短い居住時間、誤解釈)は、現在のAIシステムでは適切に対処されておらず、診断精度に重点を置いているが、エラーの発生の理由と原因を説明できない。
このギャップに対処するために,マルチエージェントフレームワークMAARTA(Multi-Agentic Adaptive Radiology Teaching Assistant)を導入する。
単エージェントモデルとは異なり、MAARTAはエラー複雑性に基づいてエージェントを動的に選択し、適応的で効率的な推論を可能にする。
構造化されたグラフを通して、専門家と学生の視線行動を比較することにより、失明した発見を特定し、知覚エラー教師エージェントに相違点を分析するよう割り当てる。
MAARTAはステップバイステップのプロンプトを使って、学生が自分のエラーを理解し、診断推論を改善し、AI駆動の放射線学教育を前進させる。
関連論文リスト
- Not All Errors Are Equal: Investigation of Speech Recognition Errors in Alzheimer's Disease Detection [62.942077348224046]
アルツハイマー病(AD)の自動診断における音声認識の役割
近年の研究では,単語誤り率(WER)とAD検出性能の非線形関係が明らかにされている。
本研究は,BERTを用いたAD検出システムにおけるASR転写誤りの影響について,一連の解析を行った。
論文 参考訳(メタデータ) (2024-12-09T09:32:20Z) - PromptMind Team at MEDIQA-CORR 2024: Improving Clinical Text Correction with Error Categorization and LLM Ensembles [0.0]
本稿では,医療従事者による臨床ノートの誤り検出と修正を含むMEDIQA-CORR共有タスクへのアプローチについて述べる。
我々は,事実情報と信頼できない情報の両方を含む膨大なインターネットデータのコーパスに基づいて訓練された大規模言語モデルの能力を評価することを目的としている。
論文 参考訳(メタデータ) (2024-05-14T07:16:36Z) - Unmasking Dementia Detection by Masking Input Gradients: A JSM Approach
to Model Interpretability and Precision [1.5501208213584152]
本稿では,多段階進行に対するアルツハイマー病(AD)分類の解釈可能なマルチモーダルモデルを導入し,ヤコビアン・サリエンシ・マップ(JSM)をモダリティに依存しないツールとして組み込んだ。
アブレーション研究を含む評価では、モデルデバッグと解釈にJSMを用いることの有効性が示され、モデル精度も著しく向上した。
論文 参考訳(メタデータ) (2024-02-25T06:53:35Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
本稿では,エンコーダ・デコーダモデルにインスパイアされた新しい応答効率応答パラダイムに基づく,識別可能な認知診断フレームワークを提案する。
診断精度を損なうことなく,ID-CDFが効果的に対処できることが示唆された。
論文 参考訳(メタデータ) (2023-09-01T07:18:02Z) - Assessing Student Errors in Experimentation Using Artificial
Intelligence and Large Language Models: A Comparative Study with Human Raters [9.899633398596672]
学生の誤りを自動的に識別するLarge Language Models (LLMs) の可能性を検討する。
GPT-3.5とGPT-4をベースとしたAIシステムを開発・試験した。
以上の結果から,AIシステムとレーダ間の誤差検出における精度の差が示唆された。
論文 参考訳(メタデータ) (2023-08-11T12:03:12Z) - Improving Object Detection in Medical Image Analysis through Multiple
Expert Annotators: An Empirical Investigation [0.3670422696827525]
本研究は, 医用画像解析における異常検出における機械学習アルゴリズムの利用について論じる。
さまざまなレベルの専門知識を持つ複数のアノテーションからアノテーションを集約する,シンプルで効果的なアプローチを導入する。
次に、複数のアノテーションから隠れラベルを推定し、再重み付き損失関数を用いて検出性能を向上させることにより、異常検出タスクにおける予測モデルの効率を向上させることを目的とする。
論文 参考訳(メタデータ) (2023-03-29T07:34:20Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
我々は、DCNNを最先端の顔認識手法であるiResNetとArcFaceに置き換える影響を分析する。
提案するアンサンブルモデルにより,目視と目視の両障害に対する最先端のパフォーマンスが達成される。
論文 参考訳(メタデータ) (2022-11-12T23:28:54Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Learning from Multiple Expert Annotators for Enhancing Anomaly Detection
in Medical Image Analysis [0.31317409221921133]
医用画像解析において、複数の専門家アノテータは「地上の真実ラベル」に関する主観的な推定をしばしば生成する。
深層学習に基づく検知器の訓練のために,複数の放射線学の専門家によるアノテーションを組み合わせた簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-03-20T17:57:26Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。