論文の概要: Not All Errors Are Equal: Investigation of Speech Recognition Errors in Alzheimer's Disease Detection
- arxiv url: http://arxiv.org/abs/2412.06332v1
- Date: Mon, 09 Dec 2024 09:32:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:59:00.585959
- Title: Not All Errors Are Equal: Investigation of Speech Recognition Errors in Alzheimer's Disease Detection
- Title(参考訳): すべての誤りが等しくない:アルツハイマー病検出における音声認識誤差の検討
- Authors: Jiawen Kang, Junan Li, Jinchao Li, Xixin Wu, Helen Meng,
- Abstract要約: アルツハイマー病(AD)の自動診断における音声認識の役割
近年の研究では,単語誤り率(WER)とAD検出性能の非線形関係が明らかにされている。
本研究は,BERTを用いたAD検出システムにおけるASR転写誤りの影響について,一連の解析を行った。
- 参考スコア(独自算出の注目度): 62.942077348224046
- License:
- Abstract: Automatic Speech Recognition (ASR) plays an important role in speech-based automatic detection of Alzheimer's disease (AD). However, recognition errors could propagate downstream, potentially impacting the detection decisions. Recent studies have revealed a non-linear relationship between word error rates (WER) and AD detection performance, where ASR transcriptions with notable errors could still yield AD detection accuracy equivalent to that based on manual transcriptions. This work presents a series of analyses to explore the effect of ASR transcription errors in BERT-based AD detection systems. Our investigation reveals that not all ASR errors contribute equally to detection performance. Certain words, such as stopwords, despite constituting a large proportion of errors, are shown to play a limited role in distinguishing AD. In contrast, the keywords related to diagnosis tasks exhibit significantly greater importance relative to other words. These findings provide insights into the interplay between ASR errors and the downstream detection model.
- Abstract(参考訳): 自動音声認識(ASR)は,アルツハイマー病(AD)の自動検出において重要な役割を担っている。
しかし、認識エラーは下流に伝播し、検出決定に影響を及ぼす可能性がある。
近年の研究では、ワードエラー率(WER)とAD検出性能の非直線的関係が明らかになっている。
本研究は,BERTを用いたAD検出システムにおけるASR転写誤りの影響について,一連の解析を行った。
調査の結果,全てのASR誤差が検出性能に等しく寄与するわけではないことが明らかとなった。
誤りが多いにもかかわらず、停止語のような特定の単語は、ADの区別において限られた役割を担っていることが示されている。
対照的に、診断タスクに関連するキーワードは、他の単語と比較して有意に重要である。
これらの結果は、ASRエラーと下流検出モデルとの相互作用に関する洞察を与える。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Error Correction by Paying Attention to Both Acoustic and Confidence References for Automatic Speech Recognition [52.624909026294105]
本稿では,非自己回帰型音声誤り訂正法を提案する。
信頼モジュールは、N-best ASR仮説の各単語の不確実性を測定する。
提案方式は,ASRモデルと比較して誤差率を21%削減する。
論文 参考訳(メタデータ) (2024-06-29T17:56:28Z) - It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
大規模言語モデル(LLM)は、自動音声認識(ASR)出力の上の生成誤り訂正(GER)に成功することができる。
本研究では,不確実性認識ダイナミックフュージョン (UADF) と呼ばれる新しい遅延融合解によって予測された転写を生成する前に,音響情報を注入することにより,そのような制限を克服することを目的とする。
論文 参考訳(メタデータ) (2024-02-08T07:21:45Z) - Useful Blunders: Can Automated Speech Recognition Errors Improve
Downstream Dementia Classification? [9.275790963007173]
自動音声認識システム(ASR)の誤差が認知症分類精度に与える影響について検討した。
ASRが生成した不完全な転写産物が貴重な情報を提供するかどうかを評価することを目的としていた。
論文 参考訳(メタデータ) (2024-01-10T21:38:03Z) - Alzheimer Disease Classification through ASR-based Transcriptions:
Exploring the Impact of Punctuation and Pauses [6.053166856632848]
アルツハイマー病(英語: Alzheimer's Disease、AD)は、世界有数の神経変性疾患である。
最近のADReSSチャレンジはAD分類のためのデータセットを提供した。
我々は、新しい最先端自動音声認識(ASR)モデルWhisperを用いて、その書き起こしを得た。
論文 参考訳(メタデータ) (2023-06-06T06:49:41Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - The Far Side of Failure: Investigating the Impact of Speech Recognition
Errors on Subsequent Dementia Classification [8.032686410648274]
自然発話で検出される言語異常は、認知障害などの認知障害のスクリーニングなど、様々な臨床応用の可能性を示唆している。
自己教師付き学習(SSL)自動音声認識(ASR)モデルにおいて,臨床環境から抽出した難解な音声サンプルでは,有意な性能が得られない。
我々の重要な発見の1つは、パラドックス的に、比較的高いエラー率を持つASRシステムは、動詞の文字起こしに基づく分類よりも、より下流の分類精度の高い転写文を生成できるということである。
論文 参考訳(メタデータ) (2022-11-11T17:06:45Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
アルツハイマー病(AD)の早期診断は予防ケアの促進とさらなる進行の遅らせに不可欠である。
本稿では,AD分類誤差をトレーニング対象関数として一貫して用いたPLMの高速微調整法について検討する。
論文 参考訳(メタデータ) (2022-10-29T09:18:41Z) - Explainable Identification of Dementia from Transcripts using
Transformer Networks [0.0]
アルツハイマー病(英語: Alzheimer's disease, AD)は、認知症の主要な原因であり、記憶喪失を伴い、時間通りに診断されない場合の日常生活に深刻な結果をもたらす可能性がある。
本稿では,2つのマルチタスク学習モデルを紹介し,主課題は認知症(バイナリ分類)の同定であり,補助課題は認知症の重症度(マルチクラス分類)の同定に対応する。
マルチタスク学習環境におけるAD患者検出の精度は84.99%である。
論文 参考訳(メタデータ) (2021-09-14T21:49:05Z) - Improving Distinction between ASR Errors and Speech Disfluencies with
Feature Space Interpolation [0.0]
微調整事前訓練言語モデル(LM)は,後処理における自動音声認識(ASR)エラー検出において一般的な手法である。
本稿では,既存のLMベースのASR誤り検出システムの改良手法を提案する。
論文 参考訳(メタデータ) (2021-08-04T02:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。