論文の概要: OmniReflect: Discovering Transferable Constitutions for LLM agents via Neuro-Symbolic Reflections
- arxiv url: http://arxiv.org/abs/2506.17449v1
- Date: Fri, 20 Jun 2025 19:38:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.421207
- Title: OmniReflect: Discovering Transferable Constitutions for LLM agents via Neuro-Symbolic Reflections
- Title(参考訳): OmniReflect:ニューロシンボリックリフレクションによるLSM剤の転写可能な構成の発見
- Authors: Manasa Bharadwaj, Nikhil Verma, Kevin Ferreira,
- Abstract要約: 我々は,複雑なタスクにおけるLarge Language Model (LLM)エージェントのパフォーマンスを改善するためのリフレクション駆動フレームワークであるOmniReflectを紹介する。
我々はNeural、Reflex、NeuroSymbolicの手法を採用し、文脈適応性と計算効率のバランスを提供する。
実験結果の平均は、ALFWorldで+10.3%、BabyAIで+23.8%、PDDLで+8.3%という、タスクの成功の大きな改善を示している。
- 参考スコア(独自算出の注目度): 0.8123746895372843
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Efforts to improve Large Language Model (LLM) agent performance on complex tasks have largely focused on fine-tuning and iterative self-correction. However, these approaches often lack generalizable mechanisms for longterm learning and remain inefficient in dynamic environments. We introduce OmniReflect, a hierarchical, reflection-driven framework that constructs a constitution, a compact set of guiding principles distilled from task experiences, to enhance the effectiveness and efficiency of an LLM agent. OmniReflect operates in two modes: Self-sustaining, where a single agent periodically curates its own reflections during task execution, and Co-operative, where a Meta-advisor derives a constitution from a small calibration set to guide another agent. To construct these constitutional principles, we employ Neural, Symbolic, and NeuroSymbolic techniques, offering a balance between contextual adaptability and computational efficiency. Empirical results averaged across models show major improvements in task success, with absolute gains of +10.3% on ALFWorld, +23.8% on BabyAI, and +8.3% on PDDL in the Self-sustaining mode. Similar gains are seen in the Co-operative mode, where a lightweight Qwen3-4B ReAct agent outperforms all Reflexion baselines on BabyAI. These findings highlight the robustness and effectiveness of OmniReflect across environments and backbones.
- Abstract(参考訳): 複雑なタスクにおけるLarge Language Model (LLM) エージェントのパフォーマンス向上への取り組みは、細調整と反復的な自己補正に重点を置いている。
しかしながら、これらのアプローチは長期学習のための一般化可能なメカニズムを欠くことが多く、動的環境において非効率である。
我々は,LLMエージェントの有効性と効率を高めるために,構成を構成する階層的・リフレクション駆動型フレームワークであるOmniReflectを紹介した。
OmniReflectは2つのモードで機能する: 自己維持(Self-sustaining)、ひとつのエージェントがタスク実行中に自分自身のリフレクションを定期的にキュレートする、協調(Co-operative)、メタアドバイザ(Meta Advisor)は、他のエージェントを導くための小さなキャリブレーションセットから構成を導出する。
これらの構成原理を構築するために、我々はNeural, Symbolic, NeuroSymbolicの技法を採用し、文脈適応性と計算効率のバランスを提供する。
ALFWorldでは+10.3%、BabyAIでは+23.8%、Self-Sustainingモードでは+8.3%となっている。
協調モードでは、軽量Qwen3-4B ReActエージェントがBabyAI上のすべての反射ベースラインを上回り、同様の利得が見られる。
これらの知見は,OmniReflectの環境およびバックボーンにおける堅牢性と有効性を強調した。
関連論文リスト
- ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding [71.654781631463]
ReAgent-Vは、新しいエージェントビデオ理解フレームワークである。
推論中に効率の良いフレーム選択とリアルタイムの報酬生成を統合する。
12のデータセットに対する大規模な実験は、一般化と推論において大きな成果を上げている。
論文 参考訳(メタデータ) (2025-06-02T04:23:21Z) - RLAE: Reinforcement Learning-Assisted Ensemble for LLMs [21.77261258691006]
大規模言語モデル(LLM)は、様々なモデルの多様な強みを効果的に組み合わせ、様々なタスクのパフォーマンスを高めるための有望なアプローチを提供する。
マルコフ決定プロセス(MDP)のレンズを通してアンサンブルを再構成する新しいフレームワークであるLLMのための強化学習支援アンサンブルを提案する。
提案手法では,入力コンテキストと中間生成状態の両方を考慮してアンサンブル重みを動的に調整するRLエージェントを提案する。
論文 参考訳(メタデータ) (2025-05-31T07:38:41Z) - MIRROR: Multi-agent Intra- and Inter-Reflection for Optimized Reasoning in Tool Learning [33.009759731505746]
ツール統合を含む複雑なタスクは、大規模言語モデルにとって大きな課題となる。
リフレクションはエージェントベンチマークにおける誤った軌道の修正に有効な戦略として現れている。
提案するMIRRORは,実行前に意図した動作を批判的に評価するフレームワークと,軌道のさらなる調整を行うインターリフレクションの両方からなるフレームワークである。
論文 参考訳(メタデータ) (2025-05-27T03:37:33Z) - Multiple Weaks Win Single Strong: Large Language Models Ensemble Weak Reinforcement Learning Agents into a Supreme One [28.264011412168347]
モデルアンサンブルは強化学習(RL)において有効なエージェントの訓練に有用である。
LLM-Ensは,タスク固有の意味理解を用いてRLモデルのアンサンブルを強化する手法である。
論文 参考訳(メタデータ) (2025-05-21T09:35:43Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
自律型大規模言語モデル(LLM)エージェントを体系的に強化し、評価し、改善するためのガイムスタイルのフレームワーク。
MLE-Dojoは、現実的なエンジニアリングシナリオを反映した、多様でオープンなMLEタスクを慎重にキュレートする。
完全に実行可能な環境は、教師付き微調整と強化学習の両方を通して包括的なエージェントトレーニングをサポートする。
論文 参考訳(メタデータ) (2025-05-12T17:35:43Z) - InvFussion: Bridging Supervised and Zero-shot Diffusion for Inverse Problems [76.39776789410088]
この研究は、教師付きアプローチの強いパフォーマンスとゼロショットメソッドの柔軟性を組み合わせたフレームワークを導入している。
新規なアーキテクチャ設計では、分解演算子を直接デノイザにシームレスに統合する。
FFHQとImageNetデータセットの実験結果は、最先端の後方サンプリング性能を示している。
論文 参考訳(メタデータ) (2025-04-02T12:40:57Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
Reinforced Meta-thinking Agents (ReMA) を導入し,Large Language Models (LLMs) の推論からメタ思考行動を求める。
ReMAは、推論プロセスを2つの階層的なエージェントに分解する。戦略上の監視と計画を生成するハイレベルなメタ思考エージェントと、詳細な実行のための低レベルな推論エージェントである。
単ターン実験による実験結果から、ReMAは複雑な推論タスクにおいて単エージェントRLベースラインよりも優れることが示された。
論文 参考訳(メタデータ) (2025-03-12T16:05:31Z) - Improving Retrospective Language Agents via Joint Policy Gradient Optimization [57.35348425288859]
RetroActは、言語エージェントのタスク計画と自己反射進化機能を共同で最適化するフレームワークである。
模倣学習と強化学習を統合した2段階共同最適化プロセスを開発した。
RetroActはタスクのパフォーマンスと意思決定プロセスを大幅に改善しています。
論文 参考訳(メタデータ) (2025-03-03T12:54:54Z) - Reflection-Bench: Evaluating Epistemic Agency in Large Language Models [10.801745760525838]
疫学エージェンシーは動的環境に関する信念を柔軟に構築し、適応し、監視する能力である。
リフレクション・ベンチ(Reflection-Bench)は,データ漏洩の長期的関連性と最小化を伴う7つのタスクからなるベンチマークである。
本研究は, コア認知機能の向上, クロスファンクショナルコーディネートの改善, 適応処理機構の開発など, 有望な研究の方向性を示唆する。
論文 参考訳(メタデータ) (2024-10-21T17:59:50Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。