Computational Approaches to Understanding Large Language Model Impact on Writing and Information Ecosystems
- URL: http://arxiv.org/abs/2506.17467v1
- Date: Fri, 20 Jun 2025 20:15:09 GMT
- Title: Computational Approaches to Understanding Large Language Model Impact on Writing and Information Ecosystems
- Authors: Weixin Liang,
- Abstract summary: Large language models (LLMs) have shown significant potential to change how we write, communicate, and create.<n>This dissertation examines how individuals and institutions are adapting to and engaging with this emerging technology.
- Score: 10.503784446147122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown significant potential to change how we write, communicate, and create, leading to rapid adoption across society. This dissertation examines how individuals and institutions are adapting to and engaging with this emerging technology through three research directions. First, I demonstrate how the institutional adoption of AI detectors introduces systematic biases, particularly disadvantaging writers of non-dominant language varieties, highlighting critical equity concerns in AI governance. Second, I present novel population-level algorithmic approaches that measure the increasing adoption of LLMs across writing domains, revealing consistent patterns of AI-assisted content in academic peer reviews, scientific publications, consumer complaints, corporate communications, job postings, and international organization press releases. Finally, I investigate LLMs' capability to provide feedback on research manuscripts through a large-scale empirical analysis, offering insights into their potential to support researchers who face barriers in accessing timely manuscript feedback, particularly early-career researchers and those from under-resourced settings.
Related papers
- The AI Imperative: Scaling High-Quality Peer Review in Machine Learning [49.87236114682497]
We argue that AI-assisted peer review must become an urgent research and infrastructure priority.<n>We propose specific roles for AI in enhancing factual verification, guiding reviewer performance, assisting authors in quality improvement, and supporting ACs in decision-making.
arXiv Detail & Related papers (2025-06-09T18:37:14Z) - Trends and Challenges in Authorship Analysis: A Review of ML, DL, and LLM Approaches [1.8686807993563161]
Authorship analysis plays an important role in diverse domains, including forensic linguistics, academia, cybersecurity, and digital content authentication.<n>This paper presents a systematic literature review on two key sub-tasks of authorship analysis; Author Attribution and Author Verification.
arXiv Detail & Related papers (2025-05-21T12:06:08Z) - Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing [0.8046044493355781]
Large Language Models (LLMs) are reshaping content creation and academic writing.<n>This study investigates the impact of AI-assisted generative revisions on research manuscripts.
arXiv Detail & Related papers (2025-04-18T11:09:16Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Survey on Vision-Language-Action Models [0.2636873872510828]
This work does not represent original research, but highlights how AI can help automate literature reviews.<n>Future research will focus on developing a structured framework for AI-assisted literature reviews.
arXiv Detail & Related papers (2025-02-07T11:56:46Z) - Automating Intervention Discovery from Scientific Literature: A Progressive Ontology Prompting and Dual-LLM Framework [56.858564736806414]
This paper proposes a novel framework leveraging large language models (LLMs) to identify interventions in scientific literature.<n>Our approach successfully identified 2,421 interventions from a corpus of 64,177 research articles in the speech-language pathology domain.
arXiv Detail & Related papers (2024-08-20T16:42:23Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.<n>ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.<n>We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.