Predicting E-commerce Purchase Behavior using a DQN-Inspired Deep Learning Model for enhanced adaptability
- URL: http://arxiv.org/abs/2506.17543v1
- Date: Sat, 21 Jun 2025 02:12:26 GMT
- Title: Predicting E-commerce Purchase Behavior using a DQN-Inspired Deep Learning Model for enhanced adaptability
- Authors: Aditi Madhusudan Jain,
- Abstract summary: This paper presents a novel approach to predicting buying intent and product demand in e-commerce settings, leveraging a Deep Q-Network (DQN) inspired architecture.<n>We evaluate our model on a large-scale e-commerce dataset comprising over 885,000 user sessions, each characterized by 1,114 features.<n>Our model achieves a balance between precision and recall, with an overall accuracy of 88% and an AUC-ROC score of 0.88.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach to predicting buying intent and product demand in e-commerce settings, leveraging a Deep Q-Network (DQN) inspired architecture. In the rapidly evolving landscape of online retail, accurate prediction of user behavior is crucial for optimizing inventory management, personalizing user experiences, and maximizing sales. Our method adapts concepts from reinforcement learning to a supervised learning context, combining the sequential modeling capabilities of Long Short-Term Memory (LSTM) networks with the strategic decision-making aspects of DQNs. We evaluate our model on a large-scale e-commerce dataset comprising over 885,000 user sessions, each characterized by 1,114 features. Our approach demonstrates robust performance in handling the inherent class imbalance typical in e-commerce data, where purchase events are significantly less frequent than non-purchase events. Through comprehensive experimentation with various classification thresholds, we show that our model achieves a balance between precision and recall, with an overall accuracy of 88\% and an AUC-ROC score of 0.88. Comparative analysis reveals that our DQN-inspired model offers advantages over traditional machine learning and standard deep learning approaches, particularly in its ability to capture complex temporal patterns in user behavior. The model's performance and scalability make it well-suited for real-world e-commerce applications dealing with high-dimensional, sequential data. This research contributes to the field of e-commerce analytics by introducing a novel predictive modeling technique that combines the strengths of deep learning and reinforcement learning paradigms. Our findings have significant implications for improving demand forecasting, personalizing user experiences, and optimizing marketing strategies in online retail environments.
Related papers
- AI-Driven Sentiment Analytics: Unlocking Business Value in the E-Commerce Landscape_v1 [0.0]
This paper presents an AI-driven sentiment analysis system designed specifically for e-commerce applications.<n>Our approach integrates traditional machine learning techniques with modern deep learning models, allowing for a more nuanced understanding of customer sentiment.<n> Experimental results show that our system outperforms standard sentiment analysis methods, achieving an accuracy of 89.7% on diverse, large-scale datasets.
arXiv Detail & Related papers (2025-03-20T18:56:22Z) - A Utility-Mining-Driven Active Learning Approach for Analyzing Clickstream Sequences [21.38368444137596]
This study introduces the High-Utility Sequential Pattern Mining using SHAP values (HUSPM-SHAP) model.
Our findings demonstrate the model's capability to refine e-commerce data processing, steering towards more streamlined, cost-effective prediction modeling.
arXiv Detail & Related papers (2024-10-09T10:44:02Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Revolutionizing Retail Analytics: Advancing Inventory and Customer Insight with AI [0.0]
This paper introduces an innovative approach utilizing cutting-edge machine learning technologies.
We aim to create an advanced smart retail analytics system (SRAS), leveraging these technologies to enhance retail efficiency and customer engagement.
arXiv Detail & Related papers (2024-02-24T11:03:01Z) - GMISeg: General Medical Image Segmentation without Re-Training [6.6467547151592505]
Deep learning models often struggle to be generalisable to unknown tasks involving new anatomical structures, labels, or shapes.
Here I developed a general model that can solve unknown medical image segmentation tasks without requiring additional training.
I evaluated the performance of the proposed method on medical image datasets with different imaging modalities and anatomical structures.
arXiv Detail & Related papers (2023-11-21T11:33:15Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.<n>On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.<n>On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Offline Q-Learning on Diverse Multi-Task Data Both Scales And
Generalizes [100.69714600180895]
offline Q-learning algorithms exhibit strong performance that scales with model capacity.
We train a single policy on 40 games with near-human performance using up-to 80 million parameter networks.
Compared to return-conditioned supervised approaches, offline Q-learning scales similarly with model capacity and has better performance, especially when the dataset is suboptimal.
arXiv Detail & Related papers (2022-11-28T08:56:42Z) - RF-LighGBM: A probabilistic ensemble way to predict customer repurchase
behaviour in community e-commerce [8.750970436444083]
The number of online payment users in China has reached 854 million.
With the emergence of community e-commerce platforms, the trend of integration of e-commerce and social applications is increasingly intense.
This paper uses the data-driven method to study the prediction of community e-commerce customers' repurchase behaviour.
arXiv Detail & Related papers (2021-09-02T05:38:16Z) - PreSizE: Predicting Size in E-Commerce using Transformers [76.33790223551074]
PreSizE is a novel deep learning framework which utilizes Transformers for accurate size prediction.
We demonstrate that PreSizE is capable of achieving superior prediction performance compared to previous state-of-the-art baselines.
As a proof of concept, we demonstrate that size predictions made by PreSizE can be effectively integrated into an existing production recommender system.
arXiv Detail & Related papers (2021-05-04T15:23:59Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
We present a new model-based reinforcement learning algorithm that learns a multi-headed dynamics model for dynamics generalization.
We incorporate context learning, which encodes dynamics-specific information from past experiences into the context latent vector.
Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods.
arXiv Detail & Related papers (2020-10-26T03:20:42Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
We argue that focusing on tail users could bring more benefits and address the long tails issue.
Specifically, we propose a gradient alignment and adopt an adversarial training scheme to facilitate knowledge transfer from the head to the tail.
arXiv Detail & Related papers (2020-10-22T03:12:02Z) - Consumer Behaviour in Retail: Next Logical Purchase using Deep Neural
Network [0.0]
Accurate prediction of consumer purchase pattern enables better inventory planning and efficient personalized marketing strategies.
Nerve network architectures like Multi Layer Perceptron, Long Short Term Memory (LSTM), Temporal Convolutional Networks (TCN) and TCN-LSTM bring over ML models like Xgboost and RandomForest.
arXiv Detail & Related papers (2020-10-14T11:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.