Context-Aware Scientific Knowledge Extraction on Linked Open Data using Large Language Models
- URL: http://arxiv.org/abs/2506.17580v1
- Date: Sat, 21 Jun 2025 04:22:34 GMT
- Title: Context-Aware Scientific Knowledge Extraction on Linked Open Data using Large Language Models
- Authors: Sajratul Y. Rubaiat, Hasan M. Jamil,
- Abstract summary: This paper introduces WISE (Workflow for Intelligent Scientific Knowledge Extraction), a system to extract, refine, and rank query-specific knowledge.<n>WISE delivers detailed, organized answers by systematically exploring and synthesizing knowledge from diverse sources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth of scientific literature challenges researchers extracting and synthesizing knowledge. Traditional search engines return many sources without direct, detailed answers, while general-purpose LLMs may offer concise responses that lack depth or omit current information. LLMs with search capabilities are also limited by context window, yielding short, incomplete answers. This paper introduces WISE (Workflow for Intelligent Scientific Knowledge Extraction), a system addressing these limits by using a structured workflow to extract, refine, and rank query-specific knowledge. WISE uses an LLM-powered, tree-based architecture to refine data, focusing on query-aligned, context-aware, and non-redundant information. Dynamic scoring and ranking prioritize unique contributions from each source, and adaptive stopping criteria minimize processing overhead. WISE delivers detailed, organized answers by systematically exploring and synthesizing knowledge from diverse sources. Experiments on HBB gene-associated diseases demonstrate WISE reduces processed text by over 80% while achieving significantly higher recall over baselines like search engines and other LLM-based approaches. ROUGE and BLEU metrics reveal WISE's output is more unique than other systems, and a novel level-based metric shows it provides more in-depth information. We also explore how the WISE workflow can be adapted for diverse domains like drug discovery, material science, and social science, enabling efficient knowledge extraction and synthesis from unstructured scientific papers and web sources.
Related papers
- KnowTrace: Bootstrapping Iterative Retrieval-Augmented Generation with Structured Knowledge Tracing [64.38243807002878]
We present KnowTrace, an elegant RAG framework to mitigate the context overload in large language models.<n>KnowTrace autonomously traces out desired knowledge triplets to organize a specific knowledge graph relevant to the input question.<n>It consistently surpasses existing methods across three multi-hop question answering benchmarks.
arXiv Detail & Related papers (2025-05-26T17:22:20Z) - GenKI: Enhancing Open-Domain Question Answering with Knowledge Integration and Controllable Generation in Large Language Models [75.25348392263676]
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP)<n>We propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation.
arXiv Detail & Related papers (2025-05-26T08:18:33Z) - Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey [39.82566660592583]
Large Language Models (LLMs) have demonstrated remarkable success in various tasks such as natural language understanding, text summarization, and machine translation.<n>Their general-purpose nature often limits their effectiveness in domain-specific applications that require specialized knowledge, such as healthcare, chemistry, or legal analysis.<n>To address this, researchers have explored diverse methods to enhance LLMs by integrating domain-specific knowledge.
arXiv Detail & Related papers (2025-02-15T07:43:43Z) - The Extractive-Abstractive Spectrum: Uncovering Verifiability Trade-offs in LLM Generations [40.498553309980764]
We study the interplay between verifiability and utility of information-sharing tools.
We find that users prefer search engines over large language models for high-stakes queries.
arXiv Detail & Related papers (2024-11-26T12:34:52Z) - From Text to Insight: Large Language Models for Materials Science Data Extraction [4.08853418443192]
The vast majority of materials science knowledge exists in unstructured natural language.<n>Structured data is crucial for innovative and systematic materials design.<n>The advent of large language models (LLMs) represents a significant shift.
arXiv Detail & Related papers (2024-07-23T22:23:47Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
The proposed research aims to develop an innovative semantic query processing system.
It enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University.
arXiv Detail & Related papers (2024-05-24T09:19:45Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Information Extraction in Low-Resource Scenarios: Survey and Perspective [56.5556523013924]
Information Extraction seeks to derive structured information from unstructured texts.
This paper presents a review of neural approaches to low-resource IE from emphtraditional and emphLLM-based perspectives.
arXiv Detail & Related papers (2022-02-16T13:44:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.