A novel fast short-time root music method for vibration monitoring of high-speed spindles
- URL: http://arxiv.org/abs/2506.17600v1
- Date: Sat, 21 Jun 2025 05:35:38 GMT
- Title: A novel fast short-time root music method for vibration monitoring of high-speed spindles
- Authors: Huiguang Zhang, Baoguo Liu, Wei Feng, Zongtang Li,
- Abstract summary: We present a fast Short-Time Root-MUMU (fSTrM) that exploits FFT-accelerated Lanczos bidiagonalization to reduce computational complexity.<n>We show that fSTrM achieves 1.2 Hz frequency resolution (vs. 12.5 Hz), 93% detection rate at $-$5 dB SNR and quantifies defect severity through harmonic content analysis.
- Score: 5.048369760845484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultra-high-speed spindle bearings challenge traditional vibration monitoring due to broadband noise, non-stationarity, and limited time-frequency resolution. We present a fast Short-Time Root-MUSIC (fSTrM) algorithm that exploits FFT-accelerated Lanczos bidiagonalization to reduce computational complexity from $\mathcal{O}(N^3)$ to $SN\log_2N+S^2(N+S)+M^2(N+M)$ while preserving parametric super-resolution. The method constructs Hankel matrices from 16 ms signal frames and extracts fault frequencies through polynomial rooting on the unit circle. Experimental validation on the Politecnico di Torino bearing dataset demonstrates breakthrough micro-defect detection capabilities. The algorithm reliably identifies 150 $\mu$m defects -- previously undetectable by conventional methods -- providing 72+ hours additional warning time. Compared to STFT and wavelet methods, fSTrM achieves 1.2 Hz frequency resolution (vs. 12.5 Hz), 93\% detection rate at $-$5 dB SNR, and quantifies defect severity through harmonic content analysis. Critically, the algorithm processes each frame in 2.4 ms on embedded ARM Cortex-M7 hardware, enabling real-time deployment. This advancement transforms bearing monitoring from failure prevention to continuous degradation assessment, establishing a new paradigm for predictive maintenance in aerospace and precision machining.
Related papers
- Dim and Small Target Detection for Drone Broadcast Frames Based on Time-Frequency Analysis [13.693769465573297]
We propose a dim and small target detection algorithm for drone broadcast frames based on the time-frequency analysis of communication protocol.<n>The proposed algorithm improves the average intersection over union, precision, and recall by 3%, 1.4%, and 2.4%, respectively, compared to existing algorithms.
arXiv Detail & Related papers (2025-05-14T02:53:42Z) - Beating the Ramsey limit on sensing with deterministic qubit control [4.596249232904721]
We introduce a protocol for enhancing the sensitivity of a measurement of a qubit's frequency in the presence of decoherence.
We demonstrate our protocol on a superconducting qubit, enhancing SNR per measurement shot by 1.65$times$ and SNR per qubit evolution time by 1.09$times$.
arXiv Detail & Related papers (2024-08-28T16:40:01Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Error mitigation, optimization, and extrapolation on a trapped ion testbed [0.05185707610786576]
A form of error mitigation called zero noise extrapolation (ZNE) can decrease an algorithm's sensitivity to these errors without increasing the number of required qubits.
We explore different methods for integrating this error mitigation technique into the Variational Quantum Eigensolver (VQE) algorithm.
Our results show that the efficacy of this error mitigation technique depends on choosing the correct implementation for a given device architecture.
arXiv Detail & Related papers (2023-07-13T19:02:39Z) - Algorithmic Shadow Spectroscopy [0.0]
We present a simulator-agnostic quantum algorithm for estimating energy gaps using very few circuit repetitions (shots) and no extra resources (ancilla qubits)
We demonstrate that our method is intuitively easy to use in practice, robust against gate noise, to a new type of algorithmic error mitigation technique, and uses orders of magnitude fewer number of shots than typical near-term quantum algorithms -- as low as 10 shots per timestep is sufficient.
arXiv Detail & Related papers (2022-12-21T14:23:48Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Physics-informed compressed sensing for PC-MRI: an inverse Navier-Stokes
problem [78.20667552233989]
We formulate a physics-informed compressed sensing (PICS) method for the reconstruction of velocity fields from noisy and sparse magnetic resonance signals.
We find that the method is capable of reconstructing and segmenting the velocity fields from sparsely-sampled signals.
arXiv Detail & Related papers (2022-07-04T14:51:59Z) - Iterative Adaptive Spectroscopy of Short Signals [0.1338174941551702]
We develop an adaptive frequency sensing protocol based on Ramsey interferometry.
High precision is achieved by enhancing the Ramsey sequence to prepare with high fidelity both the sensing and readout state.
arXiv Detail & Related papers (2022-04-10T18:07:50Z) - Training Strategies for Deep Learning Gravitational-Wave Searches [43.55994393060723]
We restrict our analysis to signals from non-spinning binary black holes.
We systematically test different strategies by which training data is presented to the networks.
We find that the deep learning algorithms can generalize low signal-to-noise ratio (SNR) signals to high SNR ones but not vice versa.
arXiv Detail & Related papers (2021-06-07T16:04:29Z) - Digital Beamforming Robust to Time-Varying Carrier Frequency Offset [21.18926642388997]
We present novel beamforming algorithms that are robust to signal corruptions arising from a time-variant carrier frequency offset.
We propose two atomic-norm-minimization (ANM)-based methods to design a weight vector that can be used to cancel interference when there exist unknown time-varying frequency drift in the pilot and interferer signals.
arXiv Detail & Related papers (2021-03-08T18:08:56Z) - Optimal Sequential Detection of Signals with Unknown Appearance and
Disappearance Points in Time [64.26593350748401]
The paper addresses a sequential changepoint detection problem, assuming that the duration of change may be finite and unknown.
We focus on a reliable maximin change detection criterion of maximizing the minimal probability of detection in a given time (or space) window.
The FMA algorithm is applied to detecting faint streaks of satellites in optical images.
arXiv Detail & Related papers (2021-02-02T04:58:57Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.