Residual Connection-Enhanced ConvLSTM for Lithium Dendrite Growth Prediction
- URL: http://arxiv.org/abs/2506.17756v1
- Date: Sat, 21 Jun 2025 16:27:59 GMT
- Title: Residual Connection-Enhanced ConvLSTM for Lithium Dendrite Growth Prediction
- Authors: Hosung Lee, Byeongoh Hwang, Dasan Kim, Myungjoo Kang,
- Abstract summary: The growth of lithium dendrites significantly impacts the performance and safety of rechargeable batteries.<n>This study proposes a model to predict dendrite growth patterns with improved accuracy and computational efficiency.
- Score: 4.8792835969814945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growth of lithium dendrites significantly impacts the performance and safety of rechargeable batteries, leading to short circuits and capacity degradation. This study proposes a Residual Connection-Enhanced ConvLSTM model to predict dendrite growth patterns with improved accuracy and computational efficiency. By integrating residual connections into ConvLSTM, the model mitigates the vanishing gradient problem, enhances feature retention across layers, and effectively captures both localized dendrite growth dynamics and macroscopic battery behavior. The dataset was generated using a phase-field model, simulating dendrite evolution under varying conditions. Experimental results show that the proposed model achieves up to 7% higher accuracy and significantly reduces mean squared error (MSE) compared to conventional ConvLSTM across different voltage conditions (0.1V, 0.3V, 0.5V). This highlights the effectiveness of residual connections in deep spatiotemporal networks for electrochemical system modeling. The proposed approach offers a robust tool for battery diagnostics, potentially aiding in real-time monitoring and optimization of lithium battery performance. Future research can extend this framework to other battery chemistries and integrate it with real-world experimental data for further validation
Related papers
- Augmented Physics-Based Li-ion Battery Model via Adaptive Ensemble Sparse Learning and Conformal Prediction [1.6874375111244329]
This study proposes an Adaptive Ensemble Sparse Identification (AESI) framework that enhances the accuracy of reduced-order li-ion battery models.<n>The approach integrates an Extended Single Particle Model (ESPM) with an evolutionary ensemble sparse learning strategy to construct a robust hybrid model.<n> Evaluation across diverse operating conditions shows that the hybrid model (ESPM + AESI) improves the voltage prediction accuracy, achieving mean squared error reductions of up to 46% on unseen data.
arXiv Detail & Related papers (2025-07-01T01:00:07Z) - Modeling Membrane Degradation in PEM Electrolyzers with Physics-Informed Neural Networks [45.32169712547367]
Proton exchange membrane (PEM) electrolyzers are pivotal for sustainable hydrogen production.<n>Their long-term performance is hindered by membrane degradation, which poses reliability and safety challenges.<n>Traditional physics-based models have been developed, offering interpretability but requiring numerous parameters that are often difficult to measure and calibrate.<n>This study presents the first application of Physics-Informed Neural Networks (PINNs) to model membrane degradation in PEM electrolyzers.
arXiv Detail & Related papers (2025-06-19T15:46:49Z) - Learning to fuse: dynamic integration of multi-source data for accurate battery lifespan prediction [0.0]
This study presents a hybrid learning framework for precise battery lifespan prediction.<n>It integrates dynamic multi-source data fusion with a stacked ensemble (SE) modeling approach.<n>It achieves a mean absolute error (MAE) of 0.0058, root mean square error (RMSE) of 0.0092, and coefficient of determination (R2) of 0.9839.
arXiv Detail & Related papers (2025-04-25T10:24:45Z) - Battery State of Health Estimation Using LLM Framework [0.0]
This study introduces a transformer-based framework for estimating the State of Health (SoH) of lithium titanate (LTO) battery cells.<n>We demonstrate the impact of charge durations on energy storage trends and apply Differential Voltage Analysis (DVA) to monitor capacity changes.<n>Our model achieves superior performance, with a Mean Absolute Error (MAE) as low as 0.87% and varied latency metrics.
arXiv Detail & Related papers (2025-01-30T03:55:56Z) - Improving Low-Fidelity Models of Li-ion Batteries via Hybrid Sparse Identification of Nonlinear Dynamics [1.5728609542259502]
This paper presents a data-inspired approach for improving the fidelity of reduced-order li-ion battery models.
The proposed method combines a Genetic Algorithm with Sequentially Thresholded Ridge Regression (GA-STRidge) to identify and compensate for discrepancies between a low-fidelity model (LFM) and data generated either from testing or a high-fidelity model (HFM)
The hybrid model, combining physics-based and data-driven methods, is tested across different driving cycles to demonstrate the ability to significantly reduce the voltage prediction error compared to the baseline LFM.
arXiv Detail & Related papers (2024-11-20T00:00:11Z) - Diff-PIC: Revolutionizing Particle-In-Cell Nuclear Fusion Simulation with Diffusion Models [38.46100610494588]
Nuclear fusion, generally seen as an ultimate solution, has been the focus of intensive research for nearly a century.
Recent advancements in Inertial Confinement Fusion have drawn significant attention to fusion research.
Laser-Plasma Interaction is critical for ensuring fusion stability and efficiency.
arXiv Detail & Related papers (2024-08-03T19:42:31Z) - Multi-Modal and Multi-Attribute Generation of Single Cells with CFGen [76.02070962797794]
This work introduces CellFlow for Generation (CFGen), a flow-based conditional generative model that preserves the inherent discreteness of single-cell data.<n>CFGen generates whole-genome multi-modal single-cell data reliably, improving the recovery of crucial biological data characteristics.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
This study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models.
By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE)
Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity.
This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data.
arXiv Detail & Related papers (2024-04-11T09:08:45Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis [6.7143928677892335]
Lithium-ion batteries (LIBs) are key to promoting electrification in the coming decades.
Inadequate understanding of LIB degradation is an important bottleneck that limits battery durability and safety.
Here, we propose hybrid physics-based and data-driven modeling for online diagnosis and prognosis of battery degradation.
arXiv Detail & Related papers (2021-10-25T11:14:12Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.