Derandomizing Simultaneous Confidence Regions for Band-Limited Functions by Improved Norm Bounds and Majority-Voting Schemes
- URL: http://arxiv.org/abs/2506.17764v1
- Date: Sat, 21 Jun 2025 17:14:38 GMT
- Title: Derandomizing Simultaneous Confidence Regions for Band-Limited Functions by Improved Norm Bounds and Majority-Voting Schemes
- Authors: Balázs Csanád Csáji, Bálint Horváth,
- Abstract summary: We work on constructing simultaneous confidence regions for band-limited functions from noisy input-output measurements.<n>We derive an approximate threshold, based on the sample size and how informative the inputs are, that governs which bound to deploy.<n>We prove that even per-input aggregated intervals retain their simultaneous coverage guarantee.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Band-limited functions are fundamental objects that are widely used in systems theory and signal processing. In this paper we refine a recent nonparametric, nonasymptotic method for constructing simultaneous confidence regions for band-limited functions from noisy input-output measurements, by working in a Paley-Wiener reproducing kernel Hilbert space. Kernel norm bounds are tightened using a uniformly-randomized Hoeffding's inequality for small samples and an empirical Bernstein bound for larger ones. We derive an approximate threshold, based on the sample size and how informative the inputs are, that governs which bound to deploy. Finally, we apply majority voting to aggregate confidence sets from random subsamples, boosting both stability and region size. We prove that even per-input aggregated intervals retain their simultaneous coverage guarantee. These refinements are also validated through numerical experiments.
Related papers
- Robust Representation Consistency Model via Contrastive Denoising [83.47584074390842]
randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations.<n> diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples.<n>We reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space.
arXiv Detail & Related papers (2025-01-22T18:52:06Z) - Simultaneous Inference for Local Structural Parameters with Random Forests [19.014535120129338]
We construct simultaneous confidence intervals for solutions to conditional moment equations.
We obtain several new order-explicit results on the concentration and normal approximation of high-dimensional U.S.
As a by-product, we obtain several new order-explicit results on the concentration and normal approximation of high-dimensional U.S.
arXiv Detail & Related papers (2024-05-13T15:46:11Z) - Improving Kernel-Based Nonasymptotic Simultaneous Confidence Bands [0.0]
The paper studies the problem of constructing nonparametric simultaneous confidence bands with nonasymptotic and distribition-free guarantees.
The approach is based on the theory of Paley-Wiener kernel reproducing Hilbert spaces.
arXiv Detail & Related papers (2024-01-28T22:43:33Z) - Show Your Work with Confidence: Confidence Bands for Tuning Curves [51.12106543561089]
tuning curves plot validation performance as a function of tuning effort.
We present the first method to construct valid confidence bands for tuning curves.
We validate our design with ablations, analyze the effect of sample size, and provide guidance on comparing models with our method.
arXiv Detail & Related papers (2023-11-16T00:50:37Z) - Kernel Ridge Regression Inference [7.066496204344619]
We provide uniform inference and confidence bands for kernel ridge regression.
We construct sharp, uniform confidence sets for KRR, which shrink at nearly the minimax rate, for general regressors.
We use our procedure to construct a novel test for match effects in school assignment.
arXiv Detail & Related papers (2023-02-13T18:26:36Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Nonparametric, Nonasymptotic Confidence Bands with Paley-Wiener Kernels
for Band-Limited Functions [0.0]
The paper introduces a method to construct confidence bands for bounded, band-limited functions based on a finite sample of input-output pairs.
The approach is distribution-free w.r.t. the observation noises and only the knowledge of the input distribution is assumed.
arXiv Detail & Related papers (2022-06-27T21:03:51Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
We present a novel planning method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous system into a discrete-state model that captures noise by probabilistic transitions between states.
We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP)
arXiv Detail & Related papers (2021-10-25T06:18:55Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
We study adaptive sensing of point processes, a widely used model from spatial statistics.
We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis.
Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (textscCox-Thompson) and top-two posterior sampling (textscTop2) principles.
arXiv Detail & Related papers (2021-10-21T14:47:06Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
We study shuffling-based variants: minibatch and local Random Reshuffling, which draw gradients without replacement.
For smooth functions satisfying the Polyak-Lojasiewicz condition, we obtain convergence bounds which show that these shuffling-based variants converge faster than their with-replacement counterparts.
We propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.
arXiv Detail & Related papers (2021-10-20T02:25:25Z) - Robust Uncertainty Bounds in Reproducing Kernel Hilbert Spaces: A Convex
Optimization Approach [9.462535418331615]
It is known that out-of-sample bounds can be established at unseen input locations.
We show how computing tight, finite-sample uncertainty bounds amounts to solving parametrically constrained linear programs.
arXiv Detail & Related papers (2021-04-19T19:27:52Z) - Adversarial Estimation of Riesz Representers [21.510036777607397]
We propose an adversarial framework to estimate the Riesz representer using general function spaces.
We prove a nonasymptotic mean square rate in terms of an abstract quantity called the critical radius, then specialize it for neural networks, random forests, and reproducing kernel Hilbert spaces as leading cases.
arXiv Detail & Related papers (2020-12-30T19:46:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.