Quasiparticle Dynamics in NbN Superconducting Microwave Resonators at Single Photon Regime
- URL: http://arxiv.org/abs/2506.17816v1
- Date: Sat, 21 Jun 2025 21:14:55 GMT
- Title: Quasiparticle Dynamics in NbN Superconducting Microwave Resonators at Single Photon Regime
- Authors: Paniz Foshat, Shima Poorgholam-khanjari, Valentino Seferai, Hua Feng, Susan Johny, Oleg A. Mukhanov, Matthew Hutchings, Robert H. Hadfield, Martin Weides, Kaveh Delfanazari,
- Abstract summary: Study examines the impact of quasiparticle energy on the performance of NbN superconducting microwave coplanar waveguide resonators on silicon chips.<n>We measured the resonance frequency and internal quality factor in response to temperature sweeps to evaluate the effect of quasiparticle dynamics.
- Score: 0.28087862620958753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exchanging energy below the superconducting gap introduces quasiparticle energy distributions in superconducting quantum circuits, which will be responsible for their decoherence. This study examines the impact of quasiparticle energy on the performance of NbN superconducting microwave coplanar waveguide resonators on silicon chips. We measured the resonance frequency and internal quality factor in response to temperature sweeps to evaluate the effect of quasiparticle dynamics. Moreover, by calculating the complex conductivity of the NbN film, we identified the contribution of quasiparticle density to the experimental results.
Related papers
- Light-Matter Interaction in dispersive Superconducting Circuit QED [0.0]
In circuit QED, the interaction between non-linear charge qubits and superconducting resonators invariably involves the qubit coupling to a large set of resonator modes.<n>We show that superconducting dispersion plays a role in determining the effective light-matter interaction cut-off.
arXiv Detail & Related papers (2025-05-14T12:22:49Z) - Cavity-assisted quantum transduction between superconducting qubits and trapped atomic particles mediated by Rydberg levels [49.1574468325115]
We present an approach for transferring quantum states from superconducting qubits to the internal states of trapped atoms or ions.<n>For experimentally demonstrated parameters of interaction strengths, dissipation, and dephasing, our scheme achieves fidelities above 95%.
arXiv Detail & Related papers (2025-01-06T18:28:18Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)<n>The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.<n>We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Minimizing Kinetic Inductance in Tantalum-Based Superconducting Coplanar Waveguide Resonators for Alleviating Frequency Fluctuation Issues [4.3869590932623606]
tantalum films exhibit significantly larger kinetic inductances than aluminum or niobium.
We achieve a reduction in resonator frequency fluctuation by a factor of more than 100.
Our findings open up new avenues for the enhanced utilization of tantalum in large-scale superconducting chips.
arXiv Detail & Related papers (2024-05-05T14:49:33Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Quantum electrodynamics of non-demolition detection of single microwave
photon by superconducting qubit array [0.0]
We analyze the effects of microwave photons on the array response to a weak probe signal exciting the resonator.
Remarkably, a single-photon signal can be detected by even a sole qubit in cavity under the realistic range of system parameters.
arXiv Detail & Related papers (2022-05-28T17:47:04Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Dynamical control of the conductivity of an atomic Josephson junction [0.0]
We propose to dynamically control the conductivity of a Josephson junction composed of two weakly coupled one dimensional condensates of ultracold atoms.
A current is induced by a periodically modulated potential difference between the condensates, giving access to the conductivity of the junction.
We demonstrate that the low-frequency conductivity of the junction can be enhanced or suppressed, depending on the choice of the driving frequency.
arXiv Detail & Related papers (2020-09-24T17:59:58Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.