Quantum electrodynamics of non-demolition detection of single microwave
photon by superconducting qubit array
- URL: http://arxiv.org/abs/2205.14490v2
- Date: Mon, 5 Dec 2022 16:10:51 GMT
- Title: Quantum electrodynamics of non-demolition detection of single microwave
photon by superconducting qubit array
- Authors: P. Navez, A. G. Balanov, S. E. Savel'ev, A. M. Zagoskin
- Abstract summary: We analyze the effects of microwave photons on the array response to a weak probe signal exciting the resonator.
Remarkably, a single-photon signal can be detected by even a sole qubit in cavity under the realistic range of system parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By consistently applying the formalism of quantum electrodynamics we
developed a comprehensive theoretical framework describing the interaction of
single microwave photons with an array of superconducting transmon qubits in a
wave guide cavity resonator. In particular, we analyze the effects of microwave
photons on the arrays response to a weak probe signal exciting the resonator.
The study reveals that a high quality factor cavities provide better spectral
resolution of the response, while cavities with moderate quality factor allow
better sensitivity for a single photon detection. Remarkably, our analysis
showed that a single-photon signal can be detected by even a sole qubit in
cavity under the realistic range of system parameters. We also discuss how
quantum properties of the photons and electrodynamical properties of resonators
affect the response of qubits array. Our results provide an efficient
theoretical background for informing the development and design of quantum
devices consisting of arrays of qubits, especially for those using a cavity
where an explicit expression for the transmission or reflection is required.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Band Gap Engineering and Controlling Transport Properties of Single
Photons in Periodic and Disordered Jaynes-Cummings Arrays [0.0]
We study the single photon transport properties in periodic and position-disordered Jaynes-Cummings arrays.
In the disordered case, we find that the single photon transmission curves show the disappearance of band formation.
The results of this work may find application in the study of quantum many-body effects in the optical domain.
arXiv Detail & Related papers (2024-01-26T22:32:21Z) - Efficient Microwave Photon to Electron Conversion in a High Impedance Quantum Circuit [0.0]
We demonstrate an efficient and continuous microwave photon to electron converter with large quantum efficiency ($83%$) and low dark current.
These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium.
arXiv Detail & Related papers (2023-12-21T17:44:33Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Parametric Amplification of an Optomechanical Quantum Interconnect [0.0]
Connecting superconducting qubits to optical fiber necessitates the conversion of microwave photons to optical photons.
Modern experimental demonstrations exhibit strong coupling between a microwave resonator and an optical cavity mediated through phononic modes.
We propose a theoretical framework for time-dependent control of the driving lasers based on the input-output formalism of quantum optics.
arXiv Detail & Related papers (2022-02-24T18:48:58Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Optical properties of a waveguide-mediated chain of randomly positioned
atoms [1.263953193517797]
We study the optical properties of an ensemble of two-level atoms coupled to a one-dimensional waveguide.
Results reveal that the optical transport properties of the atomic ensemble are influenced by the lattice constant and the filling factor of the lattice sites.
arXiv Detail & Related papers (2020-03-14T10:17:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.