Decoding Federated Learning: The FedNAM+ Conformal Revolution
- URL: http://arxiv.org/abs/2506.17872v2
- Date: Sat, 28 Jun 2025 04:14:41 GMT
- Title: Decoding Federated Learning: The FedNAM+ Conformal Revolution
- Authors: Sree Bhargavi Balija, Amitash Nanda, Debashis Sahoo,
- Abstract summary: FedNAM+ is a federated learning framework that integrates Neural Additive Models (NAMs) with a novel conformal prediction method.<n>Our method introduces a dynamic level adjustment technique that utilizes gradient-based sensitivity maps to identify key input features influencing predictions.<n>We validate our approach through experiments on CT scan, MNIST, and CIFAR datasets, demonstrating high prediction accuracy with minimal loss.
- Score: 0.16874375111244327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has significantly advanced distributed training of machine learning models across decentralized data sources. However, existing frameworks often lack comprehensive solutions that combine uncertainty quantification, interpretability, and robustness. To address this, we propose FedNAM+, a federated learning framework that integrates Neural Additive Models (NAMs) with a novel conformal prediction method to enable interpretable and reliable uncertainty estimation. Our method introduces a dynamic level adjustment technique that utilizes gradient-based sensitivity maps to identify key input features influencing predictions. This facilitates both interpretability and pixel-wise uncertainty estimates. Unlike traditional interpretability methods such as LIME and SHAP, which do not provide confidence intervals, FedNAM+ offers visual insights into prediction reliability. We validate our approach through experiments on CT scan, MNIST, and CIFAR datasets, demonstrating high prediction accuracy with minimal loss (e.g., only 0.1% on MNIST), along with transparent uncertainty measures. Visual analysis highlights variable uncertainty intervals, revealing low-confidence regions where model performance can be improved with additional data. Compared to Monte Carlo Dropout, FedNAM+ delivers efficient and global uncertainty estimates with reduced computational overhead, making it particularly suitable for federated learning scenarios. Overall, FedNAM+ provides a robust, interpretable, and computationally efficient framework that enhances trust and transparency in decentralized predictive modeling.
Related papers
- CLUE: Neural Networks Calibration via Learning Uncertainty-Error alignment [7.702016079410588]
We introduce CLUE (Calibration via Learning Uncertainty-Error Alignment), a novel approach that aligns predicted uncertainty with observed error during training.<n>We show that CLUE achieves superior calibration quality and competitive predictive performance with respect to state-of-the-art approaches.
arXiv Detail & Related papers (2025-05-28T19:23:47Z) - Quantifying calibration error in modern neural networks through evidence based theory [0.0]
This paper introduces a novel framework for quantifying the trustworthiness of neural networks by incorporating subjective logic into the evaluation of Expected Error (ECE)
We demonstrate the effectiveness of this approach through experiments on MNIST and CIFAR-10 datasets where post-calibration results indicate improved trustworthiness.
The proposed framework offers a more interpretable and nuanced assessment of AI models, with potential applications in sensitive domains such as healthcare and autonomous systems.
arXiv Detail & Related papers (2024-10-31T23:54:21Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Feature Norm Regularized Federated Learning: Transforming Skewed
Distributions into Global Insights [16.039822050613022]
This work introduces the Feature Norm Regularized Federated Learning (FNR-FL) algorithm.
FNR-FL incorporates class average feature norms to enhance model accuracy and convergence in non-i.i.d. scenarios.
We show that FNR-FL exhibits a substantial 66.24% improvement in accuracy and a significant 11.40% reduction in training time.
arXiv Detail & Related papers (2023-12-12T03:09:37Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Decorrelative Network Architecture for Robust Electrocardiogram
Classification [4.808817930937323]
It is not possible to train networks that are accurate in all scenarios.
Deep learning methods sample the model parameter space to estimate uncertainty.
These parameters are often subject to the same vulnerabilities, which can be exploited by adversarial attacks.
We propose a novel ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse complementary features.
arXiv Detail & Related papers (2022-07-19T02:36:36Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Grasping Detection Network with Uncertainty Estimation for
Confidence-Driven Semi-Supervised Domain Adaptation [17.16216430459064]
This paper presents an approach enabling the easy domain adaptation through a novel grasping detection network with confidence-driven semi-supervised learning.
The proposed grasping detection network specially provides a prediction uncertainty estimation mechanism by leveraging on Feature Pyramid Network (FPN), and the mean-teacher semi-supervised learning utilizes such uncertainty information to emphasizing the consistency loss only for those unlabelled data with high confidence.
Our results show that the proposed network can achieve high success rate on the Cornell grasping dataset, and for domain adaptation with very limited data, the confidence-driven mean teacher outperforms the original mean teacher and direct training by more than 10% in evaluation
arXiv Detail & Related papers (2020-08-20T07:42:45Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.