StainPIDR: A Pathological Image Decouplingand Reconstruction Method for StainNormalization Based on Color VectorQuantization and Structure Restaining
- URL: http://arxiv.org/abs/2506.17879v1
- Date: Sun, 22 Jun 2025 02:54:20 GMT
- Title: StainPIDR: A Pathological Image Decouplingand Reconstruction Method for StainNormalization Based on Color VectorQuantization and Structure Restaining
- Authors: Zheng Chen,
- Abstract summary: Computer-aided diagnostic systems may deteriorate when facing color-variant pathological images.<n>We propose a stain normalization method called StainPIDR.<n>The code of StainPIDR will be publicly available later.
- Score: 4.222992359119992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The color appearance of a pathological image is highly related to the imaging protocols, the proportion of different dyes, and the scanning devices. Computer-aided diagnostic systems may deteriorate when facing these color-variant pathological images. In this work, we propose a stain normalization method called StainPIDR. We try to eliminate this color discrepancy by decoupling the image into structure features and vector-quantized color features, restaining the structure features with the target color features, and decoding the stained structure features to normalized pathological images. We assume that color features decoupled by different images with the same color should be exactly the same. Under this assumption, we train a fixed color vector codebook to which the decoupled color features will map. In the restaining part, we utilize the cross-attention mechanism to efficiently stain the structure features. As the target color (decoupled from a selected template image) will also affect the performance of stain normalization, we further design a template image selection algorithm to select a template from a given dataset. In our extensive experiments, we validate the effectiveness of StainPIDR and the template image selection algorithm. All the results show that our method can perform well in the stain normalization task. The code of StainPIDR will be publicly available later.
Related papers
- Color Universal Design Neural Network for the Color Vision Deficiencies [0.7366405857677227]
We propose a color universal design network, called CUD-Net, that generates images that are visually understandable by individuals with color deficiency.<n> CUD-Net is a convolutional deep neural network that can preserve color and distinguish colors for input images.<n>Our approach is able to produce high-quality CUD images that maintain color and contrast stability.
arXiv Detail & Related papers (2025-02-12T01:53:15Z) - SPDGAN: A Generative Adversarial Network based on SPD Manifold Learning for Automatic Image Colorization [1.1174586184779576]
We propose a fully automatic colorization approach based on Symmetric Positive Definite (SPD) Manifold Learning with a generative adversarial network (SPDGAN)<n>Our model establishes an adversarial game between two discriminators and a generator. Its goal is to generate fake colorized images without losing color information across layers through residual connections.
arXiv Detail & Related papers (2023-12-21T00:52:01Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
We argue that domain gaps can also be caused by different foreground (nucleus)-background ratios.
First, we introduce a re-coloring method that relieves dramatic image color variations between different domains.
Second, we propose a new instance normalization method that is robust to the variation in the foreground-background ratios.
arXiv Detail & Related papers (2023-09-01T01:01:13Z) - Name Your Colour For the Task: Artificially Discover Colour Naming via
Colour Quantisation Transformer [62.75343115345667]
We propose a novel colour quantisation transformer, CQFormer, that quantises colour space while maintaining machine recognition on the quantised images.
We observe the consistent evolution pattern between our artificial colour system and basic colour terms across human languages.
Our colour quantisation method also offers an efficient quantisation method that effectively compresses the image storage.
arXiv Detail & Related papers (2022-12-07T03:39:18Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
Image recoloring is an emerging editing technique that can manipulate the color values of an image to give it a new style.
In this paper, we explore a solution from the perspective of the spatial correlation, which exhibits the generic detection capability for both conventional and deep learning-based recoloring.
Our method achieves the state-of-the-art detection accuracy on multiple benchmark datasets and exhibits well generalization for unknown types of recoloring methods.
arXiv Detail & Related papers (2022-04-23T01:54:06Z) - Structure-Preserving Multi-Domain Stain Color Augmentation using
Style-Transfer with Disentangled Representations [0.9051352746190446]
HistAuGAN can simulate a wide variety of realistic histology stain colors, thus making neural networks stain-invariant when applied during training.
Based on a generative adversarial network (GAN) for image-to-image translation, our model disentangles the content of the image, i.e., the morphological tissue structure, from the stain color attributes.
It can be trained on multiple domains and, therefore, learns to cover different stain colors as well as other domain-specific variations introduced in the slide preparation and imaging process.
arXiv Detail & Related papers (2021-07-26T17:52:39Z) - StainNet: a fast and robust stain normalization network [0.7796684624647288]
This paper proposes a fast and robust stain normalization network with only 1.28K parameters named StainNet.
The proposed method performs well in stain normalization and achieves a better accuracy and image quality.
arXiv Detail & Related papers (2020-12-23T08:16:27Z) - Instance-aware Image Colorization [51.12040118366072]
In this paper, we propose a method for achieving instance-aware colorization.
Our network architecture leverages an off-the-shelf object detector to obtain cropped object images.
We use a similar network to extract the full-image features and apply a fusion module to predict the final colors.
arXiv Detail & Related papers (2020-05-21T17:59:23Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
We propose a color quantization network, ColorCNN, which learns to structure the images from the classification loss in an end-to-end manner.
With only a 1-bit color space (i.e., two colors), the proposed network achieves 82.1% top-1 accuracy on the CIFAR10 dataset.
For applications, when encoded with PNG, the proposed color quantization shows superiority over other image compression methods in the extremely low bit-rate regime.
arXiv Detail & Related papers (2020-03-17T17:56:15Z) - Pix2Pix-based Stain-to-Stain Translation: A Solution for Robust Stain
Normalization in Histopathology Images Analysis [5.33024001730262]
Stain-to-Stain Translation (STST) is used to stain normalization for Hematoxylin and Eosin stained histopathology images.
We perform the process of translation based on the pix2pix framework, which uses the conditional generator adversarial networks (cGANs)
arXiv Detail & Related papers (2020-02-03T11:19:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.