Classical optimization algorithms for diagonalizing quantum Hamiltonians
- URL: http://arxiv.org/abs/2506.17883v1
- Date: Sun, 22 Jun 2025 03:17:56 GMT
- Title: Classical optimization algorithms for diagonalizing quantum Hamiltonians
- Authors: Taehee Ko, Sangkook Choi, Hyowon Park, Xiantao Li,
- Abstract summary: This paper introduces classical optimization algorithms for diagonalization by simulating a Hamiltonian.<n>We pinpoint a class of Hamiltonians that highlights severe drawbacks of existing methods, including exponential per-iteration, exponential circuit depth, or convergence to optima.<n>Our approach overcomes these shortcomings, achieving cost-time efficiency while avoiding spurious points.<n>On the practical side, we also present a randomized-coordinate variant that achieves a more efficient per-iteration cost than the deterministic counterpart.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagonalizing a Hamiltonian, which is essential for simulating its long-time dynamics, is a key primitive in quantum computing and has been proven to yield a quantum advantage for several specific families of Hamiltonians. Yet, despite its importance, only a handful of diagonalization algorithms exist, and correspondingly few families of fast-forwardable Hamiltonians have been identified. This paper introduces classical optimization algorithms for Hamiltonian diagonalization by formulating a cost function that penalizes off-diagonal terms and enforces unitarity via an orthogonality constraint, both expressed in the Pauli operator basis. We pinpoint a class of Hamiltonians that highlights severe drawbacks of existing methods, including exponential per-iteration cost, exponential circuit depth, or convergence to spurious optima. Our approach overcomes these shortcomings, achieving polynomial-time efficiency while provably avoiding suboptimal points. As a result, we broaden the known realm of fast-forwardable systems, showing that quantum-diagonalizable Hamiltonians extend to cases generated by exponentially large Lie algebras. On the practical side, we also present a randomized-coordinate variant that achieves a more efficient per-iteration cost than the deterministic counterpart. We demonstrate the effectiveness of these algorithms through explicit examples and numerical experiments.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Quantum and classical algorithms for nonlinear unitary dynamics [0.5729426778193399]
We present a quantum algorithm for a non-linear differential equation of the form $fracd|urangledt.<n>We also introduce a classical algorithm based on the Euler method allowing comparably scaling to the quantum algorithm in a restricted case.
arXiv Detail & Related papers (2024-07-10T14:08:58Z) - Efficient explicit gate construction of block-encoding for Hamiltonians needed for simulating partial differential equations [0.6144680854063939]
One of the most promising applications of quantum computers is solving partial differential equations (PDEs)<n>By using the Schrodingerisation technique - which converts non-conservative PDEs into Schrodinger equations - the problem can be reduced to Hamiltonian simulations.<n>This paper addresses an important gap by efficiently loading these Hamiltonians into the quantum computer through block-encoding.
arXiv Detail & Related papers (2024-05-21T15:13:02Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Higher-order quantum transformations of Hamiltonian dynamics [0.8192907805418581]
We present a quantum algorithm to achieve higher-order transformations of Hamiltonian dynamics.
By way of example, we demonstrate the simulation of negative time-reversal, and perform a Hamiltonian learning task.
arXiv Detail & Related papers (2023-03-17T06:01:59Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - A Hybrid Quantum-Classical Hamiltonian Learning Algorithm [6.90132007891849]
Hamiltonian learning is crucial to the certification of quantum devices and quantum simulators.
We propose a hybrid quantum-classical Hamiltonian learning algorithm to find the coefficients of the Pauli operator of the Hamiltonian.
arXiv Detail & Related papers (2021-03-01T15:15:58Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.