論文の概要: Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities
- arxiv url: http://arxiv.org/abs/2506.18019v1
- Date: Sun, 22 Jun 2025 12:59:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.699989
- Title: Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities
- Title(参考訳): AIエージェントとグラフ:分類学、進歩、将来の可能性
- Authors: Yuanchen Bei, Weizhi Zhang, Siwen Wang, Weizhi Chen, Sheng Zhou, Hao Chen, Yong Li, Jiajun Bu, Shirui Pan, Yizhou Yu, Irwin King, Fakhri Karray, Philip S. Yu,
- Abstract要約: データ構造化は、複雑で非組織的なデータをよく構造化された形式に変換することで、有望な役割を果たす。
この調査では、グラフがAIエージェントにどのように権限を与えるかを、初めて体系的にレビューする。
- 参考スコア(独自算出の注目度): 117.49715661395294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI agents have experienced a paradigm shift, from early dominance by reinforcement learning (RL) to the rise of agents powered by large language models (LLMs), and now further advancing towards a synergistic fusion of RL and LLM capabilities. This progression has endowed AI agents with increasingly strong abilities. Despite these advances, to accomplish complex real-world tasks, agents are required to plan and execute effectively, maintain reliable memory, and coordinate smoothly with other agents. Achieving these capabilities involves contending with ever-present intricate information, operations, and interactions. In light of this challenge, data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms that agents can more effectively understand and process. In this context, graphs, with their natural advantage in organizing, managing, and harnessing intricate data relationships, present a powerful data paradigm for structurization to support the capabilities demanded by advanced AI agents. To this end, this survey presents a first systematic review of how graphs can empower AI agents. Specifically, we explore the integration of graph techniques with core agent functionalities, highlight notable applications, and identify prospective avenues for future research. By comprehensively surveying this burgeoning intersection, we hope to inspire the development of next-generation AI agents equipped to tackle increasingly sophisticated challenges with graphs. Related resources are collected and continuously updated for the community in the Github link.
- Abstract(参考訳): AIエージェントは、強化学習(RL)による早期支配から、大規模言語モデル(LLM)によるエージェントの台頭に至るまで、パラダイムシフトを経験した。
この進歩は、ますます強力な能力を持つAIエージェントを授けている。
これらの進歩にもかかわらず、複雑な現実世界のタスクを達成するためには、エージェントは計画と実行を効果的に行い、信頼性のあるメモリを維持し、他のエージェントとスムーズに協調する必要がある。
これらの能力を達成するには、常に存在する複雑な情報、操作、相互作用と競合する。
この課題を踏まえて、データ構造化は、複雑で非組織的なデータを、エージェントがより効果的に理解し、処理できる十分に構造化された形式に変換することで、有望な役割を果たす。
この文脈では、グラフは複雑なデータ関係の編成、管理、活用において自然な優位性を持ち、高度なAIエージェントが要求する機能をサポートするために、構造化のための強力なデータパラダイムを提供する。
この目的のために、この調査では、グラフがAIエージェントにどのように権限を与えるかを、初めて体系的にレビューする。
具体的には,グラフ技術とコアエージェントの機能の統合,注目すべき応用の強調,今後の研究への道のりについて検討する。
この急成長する交差点を包括的に調査することで、グラフによるますます高度な課題に取り組むための、次世代AIエージェントの開発を刺激したいと思っています。
関連リソースはGithubのリンクでコミュニティのために収集され、継続的に更新される。
関連論文リスト
- Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
大規模言語モデル(LLM)は、人間のようなテキスト生成や自然言語理解を可能にすることによって、人工知能(AI)に革命をもたらした。
Retrieval Augmented Generation (RAG) がソリューションとして登場し、リアルタイムデータ検索を統合して文脈に関連のある応答を提供することでLLMを強化している。
Agentic Retrieval-Augmented Generation (RAG)は、自律的なAIエージェントをRAGパイプラインに埋め込むことによって、これらの制限を超越する。
論文 参考訳(メタデータ) (2025-01-15T20:40:25Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Collaborative Evolving Strategy for Automatic Data-Centric Development [17.962373755266068]
本稿では,自動データ中心開発(AD2)タスクを紹介する。
ドメインエキスパートのようなタスクスケジューリングと実装能力を必要とする、その中核的な課題を概説している。
本稿では,Retrieval による協調的知恵強化進化という戦略を取り入れた自律エージェントを提案する。
論文 参考訳(メタデータ) (2024-07-26T12:16:47Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents [18.369668601864575]
AriGraphは、環境を探索しながら意味記憶とエピソード記憶を統合するメモリグラフである。
我々は,Ariadne LLMエージェントが対話型テキストゲーム環境における複雑なタスクを,人間プレイヤーでも効果的に処理できることを実証した。
論文 参考訳(メタデータ) (2024-07-05T09:06:47Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。