論文の概要: Exploration of LLM Multi-Agent Application Implementation Based on LangGraph+CrewAI
- arxiv url: http://arxiv.org/abs/2411.18241v1
- Date: Wed, 27 Nov 2024 11:29:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:45.377791
- Title: Exploration of LLM Multi-Agent Application Implementation Based on LangGraph+CrewAI
- Title(参考訳): LangGraph+CrewAIに基づくLLMマルチエージェント実装の探索
- Authors: Zhihua Duan, Jialin Wang,
- Abstract要約: 本稿では,LangGraphとCrewAIの統合アプリケーションについて論じる。
LangGraphは、グラフアーキテクチャによる情報伝達の効率を改善する。
CrewAIはチームコラボレーション機能とシステムパフォーマンスを強化する。
- 参考スコア(独自算出の注目度): 1.4582633500696451
- License:
- Abstract: With the rapid development of large model technology, the application of agent technology in various fields is becoming increasingly widespread, profoundly changing people's work and lifestyles. In complex and dynamic systems, multi-agents achieve complex tasks that are difficult for a single agent to complete through division of labor and collaboration among agents. This paper discusses the integrated application of LangGraph and CrewAI. LangGraph improves the efficiency of information transmission through graph architecture, while CrewAI enhances team collaboration capabilities and system performance through intelligent task allocation and resource management. The main research contents of this paper are: (1) designing the architecture of agents based on LangGraph for precise control; (2) enhancing the capabilities of agents based on CrewAI to complete a variety of tasks. This study aims to delve into the application of LangGraph and CrewAI in multi-agent systems, providing new perspectives for the future development of agent technology, and promoting technological progress and application innovation in the field of large model intelligent agents.
- Abstract(参考訳): 大規模モデル技術の急速な発展に伴い、様々な分野におけるエージェント技術の応用がますます広まり、人々の仕事やライフスタイルが大きく変化している。
複雑でダイナミックなシステムにおいて、マルチエージェントは、単一のエージェントが作業の分割とエージェント間の協調を通じて完了するのが難しい複雑なタスクを達成する。
本稿では,LangGraphとCrewAIの統合アプリケーションについて論じる。
LangGraphはグラフアーキテクチャによる情報伝達の効率を改善し、CrewAIはインテリジェントなタスク割り当てとリソース管理を通じて、チームのコラボレーション能力とシステムパフォーマンスを向上させる。
本論文の主な研究内容は,(1) 精密制御のためのLangGraphに基づくエージェントのアーキテクチャ設計,(2) 様々なタスクをこなすためのCrewAIに基づくエージェントの能力向上である。
本研究では,マルチエージェントシステムにおけるLangGraphとCrewAIの適用を探求し,エージェント技術の今後の発展に向けた新たな視点を提供し,大規模モデル知的エージェント分野における技術の進歩とアプリケーションイノベーションを促進することを目的とする。
関連論文リスト
- GUI Agents with Foundation Models: A Comprehensive Survey [91.97447457550703]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
重要な課題を特定し,今後の研究方向性を提案する。
この調査が(M)LLMベースのGUIエージェントの分野におけるさらなる進歩を促すことを願っている。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
LLM-Agent-UMF(LLM-Agent-UMF)に基づく新しいエージェント統一モデリングフレームワークを提案する。
我々のフレームワークはLLMエージェントの異なるコンポーネントを区別し、LLMとツールを新しい要素であるコアエージェントから分離する。
我々は,13の最先端エージェントに適用し,それらの機能との整合性を実証することによって,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2024-09-17T17:54:17Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - MobileExperts: A Dynamic Tool-Enabled Agent Team in Mobile Devices [17.702068044185086]
本稿では,ツールの定式化とマルチエージェントコラボレーションを初めて導入するMobileExpertsを紹介する。
我々は,専門家同士の協調関係を確立するための二重層計画機構を開発する。
実験の結果,MobileExpertsはすべてのインテリジェンスレベルにおいて優れた性能を示し,推論コストの22%削減を実現している。
論文 参考訳(メタデータ) (2024-07-04T13:12:19Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。