Semi-parametric Functional Classification via Path Signatures Logistic Regression
- URL: http://arxiv.org/abs/2507.06637v1
- Date: Wed, 09 Jul 2025 08:06:50 GMT
- Title: Semi-parametric Functional Classification via Path Signatures Logistic Regression
- Authors: Pengcheng Zeng, Siyuan Jiang,
- Abstract summary: We propose Path Signatures Logistic Regression, a semi-parametric framework for classifying vector-valued functional data.<n>Our results highlight the practical and theoretical benefits of integrating rough path theory into modern functional data analysis.
- Score: 1.210026603224224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Path Signatures Logistic Regression (PSLR), a semi-parametric framework for classifying vector-valued functional data with scalar covariates. Classical functional logistic regression models rely on linear assumptions and fixed basis expansions, which limit flexibility and degrade performance under irregular sampling. PSLR overcomes these issues by leveraging truncated path signatures to construct a finite-dimensional, basis-free representation that captures nonlinear and cross-channel dependencies. By embedding trajectories as time-augmented paths, PSLR extracts stable, geometry-aware features that are robust to sampling irregularity without requiring a common time grid, while still preserving subject-specific timing patterns. We establish theoretical guarantees for the existence and consistent estimation of the optimal truncation order, along with non-asymptotic risk bounds. Experiments on synthetic and real-world datasets show that PSLR outperforms traditional functional classifiers in accuracy, robustness, and interpretability, particularly under non-uniform sampling schemes. Our results highlight the practical and theoretical benefits of integrating rough path theory into modern functional data analysis.
Related papers
- Identifiable Convex-Concave Regression via Sub-gradient Regularised Least Squares [1.9580473532948397]
We propose a novel nonparametric regression method that models complex input-relationships as the sum of convex and concave components.<n>The method-ICCNLS-decomposes sub-constrained shape-constrained additive decomposition.
arXiv Detail & Related papers (2025-06-22T15:53:12Z) - A Simplified Analysis of SGD for Linear Regression with Weight Averaging [64.2393952273612]
Recent work bycitetzou 2021benign provides sharp rates for SGD optimization in linear regression using constant learning rate.<n>We provide a simplified analysis recovering the same bias and variance bounds provided incitepzou 2021benign based on simple linear algebra tools.<n>We believe our work makes the analysis of gradient descent on linear regression very accessible and will be helpful in further analyzing mini-batching and learning rate scheduling.
arXiv Detail & Related papers (2025-06-18T15:10:38Z) - Asymptotics of Non-Convex Generalized Linear Models in High-Dimensions: A proof of the replica formula [17.036996839737828]
We show how an algorithm can be used to prove the optimality of a non-dimensional Gaussian regularization model.<n>We also show how we can use the Tukey loss to prove the optimality of a negative regularization model.
arXiv Detail & Related papers (2025-02-27T11:29:43Z) - Asymptotics of Linear Regression with Linearly Dependent Data [28.005935031887038]
We study the computations of linear regression in settings with non-Gaussian covariates.<n>We show how dependencies influence estimation error and the choice of regularization parameters.
arXiv Detail & Related papers (2024-12-04T20:31:47Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
This paper studies the convergence performance of divide-and-conquer estimators in the scenario that the target function does not reside in the underlying kernel space.
As a decomposition-based scalable approach, the divide-and-conquer estimators of functional linear regression can substantially reduce the algorithmic complexities in time and memory.
arXiv Detail & Related papers (2022-11-20T12:29:06Z) - On the Sparse DAG Structure Learning Based on Adaptive Lasso [39.31370830038554]
We develop a data-driven DAG structure learning method without the predefined threshold, called adaptive NOTEARS [30]
We show that adaptive NOTEARS enjoys the oracle properties under some specific conditions. Furthermore, simulation results validate the effectiveness of our method, without setting any gap of edges around zero.
arXiv Detail & Related papers (2022-09-07T05:47:59Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
We present the first method for linearizing a pre-trained model that achieves comparable performance to non-linear fine-tuning.
LQF consists of simple modifications to the architecture, loss function and optimization typically used for classification.
arXiv Detail & Related papers (2020-12-21T06:40:20Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.