Federated Learning-Based Data Collaboration Method for Enhancing Edge Cloud AI System Security Using Large Language Models
- URL: http://arxiv.org/abs/2506.18087v1
- Date: Sun, 22 Jun 2025 16:23:45 GMT
- Title: Federated Learning-Based Data Collaboration Method for Enhancing Edge Cloud AI System Security Using Large Language Models
- Authors: Huaiying Luo, Cheng Ji,
- Abstract summary: This paper proposes a federated learning-based data collaboration method to improve the security of edge cloud AI systems.<n>The proposed method is 15% better than the traditional federated learning method in terms of data protection and model robustness.
- Score: 1.819979627431298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the widespread application of edge computing and cloud systems in AI-driven applications, how to maintain efficient performance while ensuring data privacy has become an urgent security issue. This paper proposes a federated learning-based data collaboration method to improve the security of edge cloud AI systems, and use large-scale language models (LLMs) to enhance data privacy protection and system robustness. Based on the existing federated learning framework, this method introduces a secure multi-party computation protocol, which optimizes the data aggregation and encryption process between distributed nodes by using LLM to ensure data privacy and improve system efficiency. By combining advanced adversarial training techniques, the model enhances the resistance of edge cloud AI systems to security threats such as data leakage and model poisoning. Experimental results show that the proposed method is 15% better than the traditional federated learning method in terms of data protection and model robustness.
Related papers
- Cross-Cloud Data Privacy Protection: Optimizing Collaborative Mechanisms of AI Systems by Integrating Federated Learning and LLMs [1.819979627431298]
We introduce a cross-cloud architecture in which federated learning works by aggregating model updates from decentralized nodes without exposing the original data.<n>We've further innovated by introducing a secure communication layer to ensure the privacy and integrity of model updates and training data.<n> Experimental results show that the proposed method is significantly better than the traditional federated learning model in terms of accuracy, convergence speed and data privacy protection.
arXiv Detail & Related papers (2025-05-19T16:14:27Z) - A Federated Random Forest Solution for Secure Distributed Machine Learning [44.99833362998488]
This paper introduces a federated learning framework for Random Forest classifiers that preserves data privacy and provides robust performance in distributed settings.<n>By leveraging PySyft for secure, privacy-aware computation, our method enables multiple institutions to collaboratively train Random Forest models on locally stored data.<n>Experiments on two real-world healthcare benchmarks demonstrate that the federated approach maintains competitive accuracy - within a maximum 9% margin of centralized methods.
arXiv Detail & Related papers (2025-05-12T21:40:35Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)<n>FedE4RAG facilitates collaborative training of client-side RAG retrieval models.<n>We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - Research on Large Language Model Cross-Cloud Privacy Protection and Collaborative Training based on Federated Learning [5.853391005435494]
Large language models (LLMs) and popularization of cloud computing have led to increasing concerns on privacy safeguarding and data security of cross-cloud model deployment and training.<n>We present a new framework for addressing these issues along with enabling privacy preserving collaboration on training between distributed clouds based on federated learning.
arXiv Detail & Related papers (2025-03-15T18:44:50Z) - Advancing Personalized Federated Learning: Integrative Approaches with AI for Enhanced Privacy and Customization [0.0]
This paper proposes a novel approach that enhances PFL with cutting-edge AI techniques.<n>We present a model that boosts the performance of individual client models and ensures robust privacy-preserving mechanisms.<n>This work paves the way for a new era of truly personalized and privacy-conscious AI systems.
arXiv Detail & Related papers (2025-01-30T07:03:29Z) - Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning [44.17644657738893]
This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints.
We propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) to optimize AoI across the system.
arXiv Detail & Related papers (2024-07-01T15:37:38Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - An Empirical Study of Efficiency and Privacy of Federated Learning
Algorithms [2.994794762377111]
In today's world, the rapid expansion of IoT networks and the proliferation of smart devices have resulted in the generation of substantial amounts of heterogeneous data.
To handle this data effectively, advanced data processing technologies are necessary to guarantee the preservation of both privacy and efficiency.
Federated learning emerged as a distributed learning method that trains models locally and aggregates them on a server to preserve data privacy.
arXiv Detail & Related papers (2023-12-24T00:13:41Z) - An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks [0.0]
In this study, we explore the detection of cyber threats in vehicle networks through ensemble-based machine learning.
We propose a model that uses Random Forest and CatBoost as our main investigators, with Logistic Regression used to then reason on their outputs to make a final decision.
We observe that our approach improves classification accuracy, and results in fewer misclassifications compared to previous works.
arXiv Detail & Related papers (2023-12-08T10:39:18Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local.
We propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system.
It is an efficient and effective algorithm that compresses both upstream and downstream communications.
arXiv Detail & Related papers (2021-06-17T12:30:40Z) - FedSup: A Communication-Efficient Federated Learning Fatigue Driving
Behaviors Supervision Framework [10.38729333916008]
FedSup is a client-edge-cloud framework for privacy and efficient fatigue detection.
Inspired by the federated learning technique, FedSup intelligently utilizes the collaboration between client, edge, and cloud server.
arXiv Detail & Related papers (2021-04-25T07:16:49Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.