Optimizing Resource Allocation and Energy Efficiency in Federated Fog Computing for IoT
- URL: http://arxiv.org/abs/2506.18100v1
- Date: Sun, 22 Jun 2025 17:10:32 GMT
- Title: Optimizing Resource Allocation and Energy Efficiency in Federated Fog Computing for IoT
- Authors: Taimoor Ahmad, Anas Ali,
- Abstract summary: Address Resolution Protocol (ARP) spoofing attacks severely threaten Internet of Things (IoT) networks.<n>Traditional detection methods are insufficient due to high false positives and poor adaptability.<n>This research proposes a multi-layered machine learning-based framework for intelligently detecting ARP spoofing in IoT networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Address Resolution Protocol (ARP) spoofing attacks severely threaten Internet of Things (IoT) networks by allowing attackers to intercept, modify, or block communications. Traditional detection methods are insufficient due to high false positives and poor adaptability. This research proposes a multi-layered machine learning-based framework for intelligently detecting ARP spoofing in IoT networks. Our approach utilizes an ensemble of classifiers organized into multiple layers, each layer optimizing detection accuracy and reducing false alarms. Experimental evaluations demonstrate significant improvements in detection accuracy (up to 97.5\%), reduced false positive rates (less than 2\%), and faster detection time compared to existing methods. Our key contributions include introducing multi-layer ensemble classifiers specifically tuned for IoT networks, systematically addressing dataset imbalance problems, introducing a dynamic feedback mechanism for classifier retraining, and validating practical applicability through extensive simulations. This research enhances security management in IoT deployments, providing robust defenses against ARP spoofing attacks and improving reliability and trust in IoT environments.
Related papers
- FLARE: Feature-based Lightweight Aggregation for Robust Evaluation of IoT Intrusion Detection [0.0]
Internet of Things (IoT) devices have expanded the attack surface, necessitating efficient intrusion detection systems (IDSs) for network protection.<n>This paper presents FLARE, a feature-based lightweight aggregation for robust evaluation of IoT intrusion detection.<n>We employ four supervised learning models and two deep learning models to classify attacks in IoT IDS.
arXiv Detail & Related papers (2025-04-21T18:33:53Z) - Efficient IoT Intrusion Detection with an Improved Attention-Based CNN-BiLSTM Architecture [0.2356141385409842]
This paper presents a compact and efficient approach to detect botnet attacks by employing an integrated approach.<n>The proposed attention-based model achieves 99% classification accuracy in detecting botnet attacks utilizing the N-BaIoT dataset.
arXiv Detail & Related papers (2025-03-25T04:12:14Z) - Optimized detection of cyber-attacks on IoT networks via hybrid deep learning models [7.136205674624813]
The rapid expansion of Internet of Things (IoT) devices has increased the risk of cyber-attacks.<n>This work introduces a novel approach combining Self-Organizing Maps (SOMs), Deep Belief Networks (DBNs), and Autoencoders to detect known and previously unseen attack patterns.
arXiv Detail & Related papers (2025-02-17T06:01:06Z) - Smart IoT Security: Lightweight Machine Learning Techniques for Multi-Class Attack Detection in IoT Networks [0.0]
This study addresses the limitations of multi-class attack detection in IoT devices.<n>We propose new, lightweight ensemble methods grounded in robust machine learning frameworks.<n>We evaluate a wide array of contemporary machine learning algorithms to identify the optimal choice for safeguarding IoT environments.
arXiv Detail & Related papers (2025-02-06T13:17:03Z) - Efficient Denial of Service Attack Detection in IoT using Kolmogorov-Arnold Networks [22.036794530902608]
This paper introduces a novel lightweight approach to DoS attack detection based on Kolmogorov-Arnold Networks (KANs)<n>KAN achieves state-of-the-art detection performance while maintaining minimal resource requirements.<n>Compared to existing solutions, KAN reduces memory requirements by up to 98% while maintaining competitive detection rates.
arXiv Detail & Related papers (2025-02-03T21:19:46Z) - Learning in Multiple Spaces: Few-Shot Network Attack Detection with Metric-Fused Prototypical Networks [47.18575262588692]
We propose a novel Multi-Space Prototypical Learning framework tailored for few-shot attack detection.<n>By leveraging Polyak-averaged prototype generation, the framework stabilizes the learning process and effectively adapts to rare and zero-day attacks.<n> Experimental results on benchmark datasets demonstrate that MSPL outperforms traditional approaches in detecting low-profile and novel attack types.
arXiv Detail & Related papers (2024-12-28T00:09:46Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Detecting Botnet Attacks in IoT Environments: An Optimized Machine
Learning Approach [8.641714871787595]
Machine learning (ML) has emerged as one potential solution due to the abundance of data generated and available for IoT devices and networks.
This paper proposes an optimized ML-based framework to detect attacks on IoT devices in an effective and efficient manner.
Experimental results show that the proposed optimized framework has a high detection accuracy, precision, recall, and F-score.
arXiv Detail & Related papers (2020-12-16T16:39:55Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.