BSMamba: Brightness and Semantic Modeling for Long-Range Interaction in Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2506.18346v2
- Date: Tue, 05 Aug 2025 11:27:12 GMT
- Title: BSMamba: Brightness and Semantic Modeling for Long-Range Interaction in Low-Light Image Enhancement
- Authors: Tongshun Zhang, Pingping Liu, Mengen Cai, Zijian Zhang, Yubing Lu, Qiuzhan Zhou,
- Abstract summary: Current low-light image enhancement (LLIE) methods face significant limitations in simultaneously improving brightness while preserving semantic consistency, fine details, and computational efficiency.<n>We propose BSMamba, a novel visual Mamba architecture comprising two specially designed components: Brightness Mamba and Semantic Mamba.<n>BSMamba achieves state-of-the-art performance in LLIE while preserving semantic consistency.
- Score: 3.3392058493559693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current low-light image enhancement (LLIE) methods face significant limitations in simultaneously improving brightness while preserving semantic consistency, fine details, and computational efficiency. With the emergence of state-space models, particularly Mamba, image restoration has achieved remarkable performance, yet existing visual Mamba approaches flatten 2D images into 1D token sequences using fixed scanning rules, critically limiting interactions between distant tokens with causal relationships and constraining their ability to capture meaningful long-range dependencies. To address these fundamental limitations, we propose BSMamba, a novel visual Mamba architecture comprising two specially designed components: Brightness Mamba and Semantic Mamba. The Brightness Mamba revolutionizes token interaction patterns by prioritizing connections between distant tokens with similar brightness levels, effectively addressing the challenge of brightness restoration in LLIE tasks through brightness-guided selective attention. Complementing this, the Semantic Mamba establishes priority interactions between tokens sharing similar semantic meanings, allowing the model to maintain contextual consistency by connecting semantically related regions across the image, thus preserving the hierarchical nature of image semantics during enhancement. By intelligently modeling tokens based on brightness and semantic similarity rather than arbitrary scanning patterns, BSMamba transcends the constraints of conventional token sequencing while adhering to the principles of causal modeling. Extensive experiments demonstrate that BSMamba achieves state-of-the-art performance in LLIE while preserving semantic consistency. Code is available at https://github.com/bywlzts/BSMamba.
Related papers
- Rethinking Cross-Modal Interaction in Multimodal Diffusion Transformers [79.94246924019984]
Multimodal Diffusion Transformers (MM-DiTs) have achieved remarkable progress in text-driven visual generation.<n>We propose textbfTemperature-Adjusted Cross-modal Attention (TACA), a parameter-efficient method that dynamically rebalances multimodal interactions.<n>Our findings highlight the importance of balancing cross-modal attention in improving semantic fidelity in text-to-image diffusion models.
arXiv Detail & Related papers (2025-06-09T17:54:04Z) - RD-UIE: Relation-Driven State Space Modeling for Underwater Image Enhancement [59.364418120895]
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications.<n>We develop a novel relation-driven Mamba framework for effective UIE (RD-UIE)<n>Experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba.
arXiv Detail & Related papers (2025-05-02T12:21:44Z) - DefMamba: Deformable Visual State Space Model [65.50381013020248]
We propose a novel visual foundation model called DefMamba.<n>By combining a deformable scanning(DS) strategy, this model significantly improves its ability to learn image structures and detects changes in object details.<n>Numerous experiments have shown that DefMamba achieves state-of-the-art performance in various visual tasks.
arXiv Detail & Related papers (2025-04-08T08:22:54Z) - Harmonizing Visual Representations for Unified Multimodal Understanding and Generation [53.01486796503091]
We present emphHarmon, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder.<n>Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks.
arXiv Detail & Related papers (2025-03-27T20:50:38Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
We propose a Mamba-inspired Joint Unfolding Network (MiJUN) to overcome the inherent nonlinear and ill-posed characteristics of HSI reconstruction.<n>We introduce an accelerated unfolding network scheme, which reduces the reliance on initial optimization stages.<n>We refine the scanning strategy with Mamba by integrating the tensor mode-$k$ unfolding into the Mamba network.
arXiv Detail & Related papers (2025-01-02T13:56:23Z) - MambaReg: Mamba-Based Disentangled Convolutional Sparse Coding for Unsupervised Deformable Multi-Modal Image Registration [13.146228081053714]
Traditional learning-based approaches often consider registration networks as black boxes without interpretability.
We propose MambaReg, a novel Mamba-based architecture that integrates Mamba's strong capability in capturing long sequences.
Our network adeptly captures the correlation between multi-modal images, enabling focused deformation field prediction.
arXiv Detail & Related papers (2024-11-03T01:30:59Z) - Unsupervised Modality Adaptation with Text-to-Image Diffusion Models for Semantic Segmentation [54.96563068182733]
We propose Modality Adaptation with text-to-image Diffusion Models (MADM) for semantic segmentation task.
MADM utilizes text-to-image diffusion models pre-trained on extensive image-text pairs to enhance the model's cross-modality capabilities.
We show that MADM achieves state-of-the-art adaptation performance across various modality tasks, including images to depth, infrared, and event modalities.
arXiv Detail & Related papers (2024-10-29T03:49:40Z) - DiM-Gesture: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2 framework [2.187990941788468]
generative model crafted to create highly personalized 3D full-body gestures solely from raw speech audio.
Model integrates a Mamba-based fuzzy feature extractor with a non-autoregressive Adaptive Layer Normalization (AdaLN) Mamba-2 diffusion architecture.
arXiv Detail & Related papers (2024-08-01T08:22:47Z) - Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting [49.87694319431288]
Generalist segmentation models are increasingly favored for diverse tasks involving various objects from different image sources.
We propose a Comprehensive Generative (CGR) framework that restores appearance and semantic knowledge by synthesizing image-mask pairs.
Experiments on incremental tasks (cardiac, fundus and prostate segmentation) show its clear advantage for alleviating concurrent appearance and semantic forgetting.
arXiv Detail & Related papers (2024-06-28T10:05:58Z) - PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition [21.761988930589727]
PlainMamba is a simple non-hierarchical state space model (SSM) designed for general visual recognition.
We adapt the selective scanning process of Mamba to the visual domain, enhancing its ability to learn features from two-dimensional images.
Our architecture is designed to be easy to use and easy to scale, formed by stacking identical PlainMamba blocks.
arXiv Detail & Related papers (2024-03-26T13:35:10Z) - Bi-level Dynamic Learning for Jointly Multi-modality Image Fusion and
Beyond [50.556961575275345]
We build an image fusion module to fuse complementary characteristics and cascade dual task-related modules.
We develop an efficient first-order approximation to compute corresponding gradients and present dynamic weighted aggregation to balance the gradients for fusion learning.
arXiv Detail & Related papers (2023-05-11T10:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.