論文の概要: T-CPDL: A Temporal Causal Probabilistic Description Logic for Developing Logic-RAG Agent
- arxiv url: http://arxiv.org/abs/2506.18559v1
- Date: Mon, 23 Jun 2025 12:11:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.971221
- Title: T-CPDL: A Temporal Causal Probabilistic Description Logic for Developing Logic-RAG Agent
- Title(参考訳): T-CPDL : 論理RAGエージェント開発のための時間因果確率的記述論理
- Authors: Hong Qing Yu,
- Abstract要約: T-CPDL(Temporal Causal Probabilistic Description Logic)は、Description Logicを時間間隔演算子、明示的な因果関係、確率的アノテーションで拡張する統合フレームワークである。
T-CPDLは、言語モデル出力の推論精度、解釈可能性、信頼性校正を大幅に改善する。
この研究は、高度なLogic-Retrieval-Augmented Generation (Logic-RAG)フレームワークの開発の基礎となる。
- 参考スコア(独自算出の注目度): 5.439020425819001
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models excel at generating fluent text but frequently struggle with structured reasoning involving temporal constraints, causal relationships, and probabilistic reasoning. To address these limitations, we propose Temporal Causal Probabilistic Description Logic (T-CPDL), an integrated framework that extends traditional Description Logic with temporal interval operators, explicit causal relationships, and probabilistic annotations. We present two distinct variants of T-CPDL: one capturing qualitative temporal relationships through Allen's interval algebra, and another variant enriched with explicit timestamped causal assertions. Both variants share a unified logical structure, enabling complex reasoning tasks ranging from simple temporal ordering to nuanced probabilistic causation. Empirical evaluations on temporal reasoning and causal inference benchmarks confirm that T-CPDL substantially improves inference accuracy, interpretability, and confidence calibration of language model outputs. By delivering transparent reasoning paths and fine-grained temporal and causal semantics, T-CPDL significantly enhances the capability of language models to support robust, explainable, and trustworthy decision-making. This work also lays the groundwork for developing advanced Logic-Retrieval-Augmented Generation (Logic-RAG) frameworks, potentially boosting the reasoning capabilities and efficiency of knowledge graph-enhanced RAG systems.
- Abstract(参考訳): 大きな言語モデルは、流動的なテキストを生成するのに優れているが、時間的制約、因果関係、確率論的推論を含む構造的推論にしばしば苦労する。
これらの制約に対処するため,従来の記述論理を時間間隔演算子,明示的な因果関係,確率的アノテーションで拡張するフレームワークである時間因果確率記述論理(T-CPDL)を提案する。
我々はT-CPDLの2つの異なる変種を示す: 1つはアレンの区間代数を通して質的時間的関係を捉え、もう1つの変種は明示的なタイムスタンプ付き因果アサーションで富む。
どちらの変種も統一論理構造を共有しており、単純な時間的順序付けから微妙な確率因果関係まで、複雑な推論タスクを可能にする。
時間的推論と因果推論ベンチマークの実証評価により、T-CPDLは言語モデル出力の推論精度、解釈可能性、信頼性の校正を大幅に改善することを確認した。
透明な推論パスと微粒な時間的・因果的意味論を提供することで、T-CPDLは、堅牢で説明可能な、信頼できる意思決定を支援する言語モデルの能力を大幅に強化する。
この研究は、高度なLogic-Retrieval-Augmented Generation (Logic-RAG)フレームワークの開発にも基礎を置き、知識グラフ強化RAGシステムの推論能力と効率を高める可能性がある。
関連論文リスト
- PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThinkは、外部から推定されるタスクの難しさと内部で測定されたモデルの不確実性を統合する、シンプルで効果的なスキームである。
シーンの複雑さと予測信頼度に応じて推論の長さを圧縮することを学ぶ。
実験により,提案手法は推論効率と全体セグメンテーション性能の両方を改善した。
論文 参考訳(メタデータ) (2025-05-29T17:55:49Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thoughtはステップバイステップの問題解決を促すが、中間出力の過剰な冗長性を犠牲にすることが多い。
我々は,認知にインスパイアされた推論パラダイムを言語制約と統合する促進フレームワークであるSketch-of-Thought(SoT)を提案する。
SoTはトークンを最大78%削減し、15の推論データセットで最小限の精度損失を発生させる。
論文 参考訳(メタデータ) (2025-03-07T06:57:17Z) - Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
CoT(Chain-of-Thought)のプロンプトによって,大規模言語モデル(LLM)の推論能力の向上が期待できる。
本稿では、生成したプログラムと対応するNL記述との間に論理単位を整列させることにより、より信頼性の高い推論経路を構築するReasoning-as-Logic-Units (RaLU)を提案する。
論文 参考訳(メタデータ) (2025-02-05T08:23:18Z) - Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
大規模言語モデル(LLM)は、推論タスクにおいて顕著な性能を示すが、数学的および複雑な論理的推論において制限に直面している。
バッチ推論前のウォームアップフェーズにおいて,LLMの論理的推論能力を高めるために,Reversal of Thought (RoT)を提案する。
RoT は Preference-Guided Reverse Reasoning warm-up 戦略を利用している。
論文 参考訳(メタデータ) (2024-10-16T07:44:28Z) - Logic Agent: Enhancing Validity with Logic Rule Invocation [24.815341366820753]
Chain-of-Thoughtプロンプトは、推論タスク中に言語モデルの推論能力を増強するための重要なテクニックとして現れている。
本稿では,大規模言語モデルにおける推論プロセスの有効性向上を目的としたエージェントベースのフレームワークであるLogic Agent(LA)を紹介する。
論文 参考訳(メタデータ) (2024-04-28T10:02:28Z) - Enhancing Systematic Decompositional Natural Language Inference Using Informal Logic [51.967603572656266]
我々は,分解包含を注釈付けするための一貫した理論的なアプローチを導入する。
我々の新しいデータセットRDTEは、前回の分解エンターメントデータセットよりもかなり高い内部整合性(+9%)を持つことがわかった。
また,RDTE による知識蒸留によるエンテーメント分類器の訓練や,エンテーメントツリー推論エンジンへの導入により,精度と検証精度が向上することが確認された。
論文 参考訳(メタデータ) (2024-02-22T18:55:17Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - LogiGAN: Learning Logical Reasoning via Adversarial Pre-training [58.11043285534766]
本稿では,言語モデルの論理的推論能力を向上させるために,教師なしの対人事前学習フレームワークLogiGANを提案する。
人間の学習におけるリフレクティブ思考の促進効果に着想を得て,逆生成検証アーキテクチャを用いて学習思考過程をシミュレートする。
LogiGANで事前トレーニングされたベースモデルと大規模言語モデルの両方で、12のデータセットで明らかなパフォーマンス改善が示されている。
論文 参考訳(メタデータ) (2022-05-18T08:46:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。