論文の概要: Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment
- arxiv url: http://arxiv.org/abs/2502.07803v1
- Date: Wed, 05 Feb 2025 08:23:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-16 04:07:15.306533
- Title: Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment
- Title(参考訳): Reasoning-as-Logic-Units: 論理単位アライメントによる大規模言語モデルのテスト時間推論のスケーリング
- Authors: Cheryl Li, Tianyuan Xu, Yiwen Guo,
- Abstract要約: CoT(Chain-of-Thought)のプロンプトによって,大規模言語モデル(LLM)の推論能力の向上が期待できる。
本稿では、生成したプログラムと対応するNL記述との間に論理単位を整列させることにより、より信頼性の高い推論経路を構築するReasoning-as-Logic-Units (RaLU)を提案する。
- 参考スコア(独自算出の注目度): 21.12989936864145
- License:
- Abstract: Chain-of-Thought (CoT) prompting has shown promise in enhancing the reasoning capabilities of large language models (LLMs) by generating natural language (NL) rationales that lead to the final answer. However, it struggles with numerical computation, which has somehow led to the development of program-aided techniques. Despite their potential, a persistent challenge remains: inconsistencies between LLM-reported reasoning steps and the logic in generated programs, which we term ``reasoning hallucinations." This stems from the inherent ambiguities of NL and the statistical nature of LLMs, which often lack rigorous logical coherence. To address this challenge, we propose a novel test-time scaling framework, Reasoning-as-Logic-Units (RaLU), which constructs a more reliable reasoning path by aligning logical units between the generated program and their corresponding NL descriptions. By decomposing the initially generated program into discrete units using static analysis, RaLU engages in an iterative dialogue with the LLM to judge, refine, and explain each unit. A rewind-and-correct mechanism ensures alignment between code statements and task requirements in each unit, ultimately forming a cohesive reasoning path under the program's logic, from which the model reaches a final solution. Our experiments demonstrate that RaLU significantly outperforms existing baselines in mathematical reasoning (GSM8K, MATH) and algorithmic reasoning (HumanEval+, MBPP+), underscoring its potential to advance LLM reasoning and programming by offering enhanced accuracy and interpretability.
- Abstract(参考訳): CoT(Chain-of-Thought)のプロンプトは、最終的な答えにつながる自然言語(NL)の論理を生成することによって、大規模言語モデル(LLM)の推論能力を高めることを約束している。
しかし、プログラム支援技術の発展に繋がる数値計算に苦戦している。
LLMが報告した推論ステップと生成されたプログラムの論理の矛盾。
「これはNLの本来の曖昧さとLLMの統計的性質に起因しており、厳密な論理的一貫性を欠いていることが多い。」
この課題に対処するため、我々は、生成したプログラムと対応するNL記述との間に論理単位を整合させることにより、より信頼性の高い推論経路を構築する新しいテスト時間スケーリングフレームワーク、Reasoning-as-Logic-Units (RaLU)を提案する。
初期生成したプログラムを静的解析を用いて離散単位に分解することで、RaLUはLLMと反復対話を行い、各単位を判断、洗練、説明する。
Rewind-and-correctメカニズムは、各ユニットにおけるコードステートメントとタスク要求の整合性を確保し、最終的にプログラムの論理の下で凝集的な推論パスを形成し、モデルが最終解に達する。
我々の実験は、RLUが数学的推論(GSM8K, MATH)とアルゴリズム的推論(HumanEval+, MBPP+)において既存のベースラインを著しく上回り、LLM推論とプログラミングの進歩の可能性を示す。
関連論文リスト
- Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
大規模言語モデル(LLM)は、下流タスクで最先端のパフォーマンスを達成することで、多くの領域に革命をもたらした。
近年の取り組みにより,LSMは逐次決定問題の解決に乏しいことが示されている。
論文 参考訳(メタデータ) (2024-01-17T08:22:52Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
LLMの複雑な推論には2行のアプローチが採用されている。
1行の作業は様々な推論構造を持つLLMを誘導し、構造出力は自然に中間推論ステップと見なすことができる。
他方の行では、LCMのない宣言的解法を用いて推論処理を行い、推論精度は向上するが、解法のブラックボックスの性質により解釈性に欠ける。
具体的には,Prologインタプリタが生成した中間検索ログにアクセスし,人間可読推論に解釈可能であることを示す。
論文 参考訳(メタデータ) (2023-11-16T11:26:21Z) - Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof Generation with Contrastive Stepwise Decoding [10.421832675327712]
本稿では,論理的推論のためのモデルの能力を高めるために,負の推論経路を用いることにより,ステップワイズな証明生成に対照的な復号を導入する。
EntailmentBankの実験は、言語モデルの計画能力を実証する上で、我々の手法の成功を裏付けている。
論文 参考訳(メタデータ) (2023-11-12T05:12:49Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Improved Logical Reasoning of Language Models via Differentiable
Symbolic Programming [12.984852480664378]
事前訓練された大規模言語モデル(LM)は、スケールと構成性の進歩にもかかわらず、論理的推論を確実に行うのに苦労する。
本稿では,DSR-LMを提案する。DSR-LMは,事前学習したLMが事実知識の認識を制御し,帰納的推論を行う,微分可能なシンボリック推論フレームワークである。
論文 参考訳(メタデータ) (2023-05-05T07:24:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。