論文の概要: Systematic improvement of the quantum approximate optimisation ansatz for combinatorial optimisation using quantum subspace expansion
- arxiv url: http://arxiv.org/abs/2506.18594v1
- Date: Mon, 23 Jun 2025 12:54:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.9848
- Title: Systematic improvement of the quantum approximate optimisation ansatz for combinatorial optimisation using quantum subspace expansion
- Title(参考訳): 量子部分空間展開を用いた組合せ最適化のための量子近似アンサッツの体系的改善
- Authors: Yann Beaujeault-Taudière,
- Abstract要約: ジェネレータ座標法(GCM)による量子近似最適化アンサッツ(QAOA)の増強に関する研究
Erd"os-R'enyiグラフ上の最大独立集合に対する近似比と忠実度を体系的に改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The quantum approximate optimisation ansatz (QAOA) is one of the flagship algorithms used to tackle combinatorial optimisation on graphs problems using a quantum computer, and is considered a strong candidate for early fault-tolerant advantage. In this work, I study the enhancement of the QAOA with a generator coordinate method (GCM), and achieve systematic performances improvements in the approximation ratio and fidelity for the maximal independent set on Erd\"os-R\'enyi graphs. The cost-to-solution of the present method and the QAOA are compared by analysing the number of logical CNOT and $T$ gates required for either algorithm. Extrapolating on the numerical results obtained, it is estimated that for this specific problem and setup, the approach surpasses QAOA for graphs of size greater than 75 using as little as eight trial states. The potential of the method for other combinatorial optimisation problems is briefly discussed.
- Abstract(参考訳): 量子近似アンサッツ (QAOA) は、量子コンピュータを用いてグラフ問題の組合せ最適化に取り組むために用いられるフラッグシップアルゴリズムの1つである。
本稿では, ジェネレータ座標法(GCM)によるQAOAの強化について検討し, Erd\"os-R\enyi グラフ上の最大独立集合に対する近似比と忠実度を体系的に改善した。
本手法とQAOAのコスト対解決は,いずれのアルゴリズムにも要求される論理的CNOTと$T$ゲートの数を分析して比較する。
得られた数値結果から,75以上のグラフに対して8つの試行状態を用いてQAOAを超えることが推定された。
その他の組合せ最適化問題の解法の可能性について概説する。
関連論文リスト
- A Gradient Meta-Learning Joint Optimization for Beamforming and Antenna Position in Pinching-Antenna Systems [63.213207442368294]
マルチ導波路ピンチアンテナシステムの新しい最適化設計について検討する。
提案したGML-JOアルゴリズムは,既存の最適化手法と比較して,様々な選択や性能に頑健である。
論文 参考訳(メタデータ) (2025-06-14T17:35:27Z) - Adam assisted Fully informed Particle Swarm Optimzation ( Adam-FIPSO ) based Parameter Prediction for the Quantum Approximate Optimization Algorithm (QAOA) [1.024113475677323]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm, QAOA)は、マックス・カット問題などの最適化問題の解法として用いられる顕著な変分アルゴリズムである。
QAOAの重要な課題は、高品質なソリューションにつながる適切なパラメータを効率的に特定することである。
論文 参考訳(メタデータ) (2025-06-07T13:14:41Z) - A Quantum Genetic Algorithm Framework for the MaxCut Problem [49.59986385400411]
提案手法では,Groverをベースとした進化的枠組みと分割・分散原理を用いた量子遺伝的アルゴリズム(QGA)を提案する。
完全グラフ上では、提案手法は真に最適なMaxCut値を一貫して達成し、セミデフィニティプログラミング(SDP)アプローチより優れている。
ErdHos-R'enyiランダムグラフでは、QGAは競合性能を示し、SDP結果の92-96%で中央値の解が得られる。
論文 参考訳(メタデータ) (2025-01-02T05:06:16Z) - Similarity-Based Parameter Transferability in the Quantum Approximate
Optimization Algorithm [2.985148456817082]
特定の値に関する最適なQAOAパラメータのクラスタリングを示す。
異なるQAOAインスタンス間のパラメータの転送性がうまく説明できる。
近似比が等しい大きなアクセプタグラフに対して、最適ドナーグラフQAOAパラメータをほぼ最適パラメータとして使用できることを示す。
論文 参考訳(メタデータ) (2023-07-11T16:35:49Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Transferability of optimal QAOA parameters between random graphs [3.321726991033431]
本稿では, グラフの局所特性に基づいて, 特定の値に関する最適QAOAパラメータの収束を説明・予測できることを示す。
6ノードのランダムグラフに対して最適化されたパラメータを64ノードのランダムグラフに対してほぼ最適なパラメータとして変更することなくうまく利用できることを示す。
論文 参考訳(メタデータ) (2021-06-14T15:57:47Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Evaluation of QAOA based on the approximation ratio of individual
samples [0.0]
我々は、Max-Cut問題に適用されたQAOAの性能をシミュレートし、いくつかの古典的代替品と比較する。
QAOA計算複雑性理論のガイダンスが進化しているため、量子的優位性を求めるためのフレームワークを利用する。
論文 参考訳(メタデータ) (2020-06-08T18:00:18Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。