論文の概要: Trustworthy Prediction with Gaussian Process Knowledge Scores
- arxiv url: http://arxiv.org/abs/2506.18630v1
- Date: Mon, 23 Jun 2025 13:36:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.999195
- Title: Trustworthy Prediction with Gaussian Process Knowledge Scores
- Title(参考訳): ガウス過程知識スコアを用いた信頼できる予測
- Authors: Kurt Butler, Guanchao Feng, Tong Chen, Petar Djuric,
- Abstract要約: 確率モデルは、観測できないデータ空間の領域で予測するためにしばしば使用される。
本研究では,観測データによって予測の不確実性が低下した程度を定量化する予測のための知識スコアを提案する。
我々は,GPRモデルからの予測が正確である場合に,知識スコアが予測できることを示す。
- 参考スコア(独自算出の注目度): 7.090362431002478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic models are often used to make predictions in regions of the data space where no observations are available, but it is not always clear whether such predictions are well-informed by previously seen data. In this paper, we propose a knowledge score for predictions from Gaussian process regression (GPR) models that quantifies the extent to which observing data have reduced our uncertainty about a prediction. The knowledge score is interpretable and naturally bounded between 0 and 1. We demonstrate in several experiments that the knowledge score can anticipate when predictions from a GPR model are accurate, and that this anticipation improves performance in tasks such as anomaly detection, extrapolation, and missing data imputation. Source code for this project is available online at https://github.com/KurtButler/GP-knowledge.
- Abstract(参考訳): 確率的モデルは、観測できないデータ空間の領域で予測するためにしばしば使用されるが、そのような予測が以前観測されたデータによって適切に表現されているかは必ずしも明確ではない。
本稿では,ガウス過程回帰(GPR)モデルからの予測のための知識スコアを提案する。
知識スコアは解釈可能で、0 と 1 の間に自然に有界である。
本稿では,GPRモデルからの予測が正確である場合に,知識スコアが予測できることを示すとともに,異常検出や外挿,データ計算の欠如といったタスクにおいて,この予測によって性能が向上することを示す。
このプロジェクトのソースコードはhttps://github.com/KurtButler/GP-knowledge.comで公開されている。
関連論文リスト
- Augmented prediction of a true class for Positive Unlabeled data under selection bias [0.8594140167290099]
本稿では, 観測時刻をラベル付けした正のアンラベル(PU)データに対して, 新たな観測環境を提案する。
我々は、追加情報は予測に重要であると主張し、このタスクを"Augmented PU prediction"と呼んでいる。
このようなシナリオで経験的ベイズ則のいくつかの変種を導入し、それらの性能について検討する。
論文 参考訳(メタデータ) (2024-07-14T19:58:01Z) - Selective Temporal Knowledge Graph Reasoning [70.11788354442218]
時間的知識グラフ(TKG)は、与えられた歴史的事実に基づいて将来の事実を予測することを目的としている。
既存のTKG推論モデルは、不確実な予測を控えることができない。
本稿では,既存のモデルが無差別な予測ではなく選択的に行うのに役立つ,TKG推論の棄却機構を提案する。
論文 参考訳(メタデータ) (2024-04-02T06:56:21Z) - Best of Many in Both Worlds: Online Resource Allocation with Predictions under Unknown Arrival Model [16.466711636334587]
オンライン意思決定者は、到着や要求など、将来の変数に関する予測を得ることが多い。
意思決定者にとって予測精度は未知であるため、予測に盲目的に追従することは有害である。
我々は未知の予測精度に頑健な方法で予測を利用するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-21T04:57:32Z) - Efficient learning of nonlinear prediction models with time-series
privileged information [11.679648862014655]
線形ガウス力学系において、中間時系列データにアクセス可能なLuPI学習者は、偏りのない古典的学習者よりも決して悪くはないことを示す。
このマップが未知の場合のランダムな特徴と表現学習に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-15T05:56:36Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
我々は、信頼性のあるデータを与えられていない不確実性予測器を明示的に訓練することを提案する。
データ無しでは訓練できないので、入力空間の情報的低密度領域において擬似入力を生成するメカニズムを提供する。
総合的な評価により、様々なタスクにおける最先端性能を維持しながら、不確実性の頑健かつ解釈可能な予測が得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。