Historical Report Guided Bi-modal Concurrent Learning for Pathology Report Generation
- URL: http://arxiv.org/abs/2506.18658v1
- Date: Mon, 23 Jun 2025 14:00:21 GMT
- Title: Historical Report Guided Bi-modal Concurrent Learning for Pathology Report Generation
- Authors: Ling Zhang, Boxiang Yun, Qingli Li, Yan Wang,
- Abstract summary: Historical Report Guided textbfBi-modal Concurrent Learning Framework for Pathology Report textbfGeneration (BiGen) emulating pathologists' diagnostic reasoning.<n>BiGen retrieves WSI-relevant knowledge from pre-built medical knowledge bank by matching high-attention patches.<n>Our framework achieves state-of-the-art performance with 7.4% relative improvement in NLP metrics and 19.1% enhancement in classification metrics for Her-2 prediction versus existing methods.
- Score: 14.8602760818616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated pathology report generation from Whole Slide Images (WSIs) faces two key challenges: (1) lack of semantic content in visual features and (2) inherent information redundancy in WSIs. To address these issues, we propose a novel Historical Report Guided \textbf{Bi}-modal Concurrent Learning Framework for Pathology Report \textbf{Gen}eration (BiGen) emulating pathologists' diagnostic reasoning, consisting of: (1) A knowledge retrieval mechanism to provide rich semantic content, which retrieves WSI-relevant knowledge from pre-built medical knowledge bank by matching high-attention patches and (2) A bi-modal concurrent learning strategy instantiated via a learnable visual token and a learnable textual token to dynamically extract key visual features and retrieved knowledge, where weight-shared layers enable cross-modal alignment between visual features and knowledge features. Our multi-modal decoder integrates both modals for comprehensive diagnostic reports generation. Experiments on the PathText (BRCA) dataset demonstrate our framework's superiority, achieving state-of-the-art performance with 7.4\% relative improvement in NLP metrics and 19.1\% enhancement in classification metrics for Her-2 prediction versus existing methods. Ablation studies validate the necessity of our proposed modules, highlighting our method's ability to provide WSI-relevant rich semantic content and suppress information redundancy in WSIs. Code is publicly available at https://github.com/DeepMed-Lab-ECNU/BiGen.
Related papers
- Histopathology Image Report Generation by Vision Language Model with Multimodal In-Context Learning [27.49826980862286]
We propose an in-context learning framework called PathGenIC that integrates context derived from the training set with a multimodal in-context learning mechanism.<n>Our method dynamically retrieves semantically similar whole slide representations (WSI)-report pairs and incorporates adaptive feedback to enhance contextual relevance and generation quality.
arXiv Detail & Related papers (2025-06-21T08:56:45Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - A Multimodal Approach Combining Structural and Cross-domain Textual Guidance for Weakly Supervised OCT Segmentation [12.948027961485536]
We propose a novel Weakly Supervised Semantic (WSSS) approach that integrates structural guidance with text-driven strategies to generate high-quality pseudo labels.
Our method achieves state-of-the-art performance, highlighting its potential to improve diagnostic accuracy and efficiency in medical imaging.
arXiv Detail & Related papers (2024-11-19T16:20:27Z) - Advancing Medical Radiograph Representation Learning: A Hybrid Pre-training Paradigm with Multilevel Semantic Granularity [14.223539927549782]
We propose a novel HybridMED framework to align global-level visual representations with impression and token-level visual representations with findings.<n>Our framework incorporates a generation decoder that employs two proxy tasks, responsible for generating the impression from images, via a captioning branch, and (2) findings, through a summarization branch.<n> Experiments on the MIMIC-CXR dataset reveal that our summarization branch effectively distills knowledge to the captioning branch, enhancing model performance without significantly increasing parameter requirements.
arXiv Detail & Related papers (2024-10-01T07:05:36Z) - Attend and Enrich: Enhanced Visual Prompt for Zero-Shot Learning [114.59476118365266]
We propose AENet, which endows semantic information into the visual prompt to distill semantic-enhanced prompt for visual representation enrichment.<n> AENet comprises two key steps: 1) exploring the concept-harmonized tokens for the visual and attribute modalities, grounded on the modal-sharing token that represents consistent visual-semantic concepts; and 2) yielding semantic-enhanced prompt via the visual residual refinement unit with attribute consistency supervision.
arXiv Detail & Related papers (2024-06-05T07:59:48Z) - Dynamic Traceback Learning for Medical Report Generation [12.746275623663289]
This study proposes a novel multi-modal dynamic traceback learning framework (DTrace) for medical report generation.
We introduce a traceback mechanism to supervise the semantic validity of generated content and a dynamic learning strategy to adapt to various proportions of image and text input.
The proposed DTrace framework outperforms state-of-the-art methods for medical report generation.
arXiv Detail & Related papers (2024-01-24T07:13:06Z) - Visual Explanations of Image-Text Representations via Multi-Modal Information Bottleneck Attribution [49.762034744605955]
We propose a multi-modal information bottleneck approach to improve interpretability of vision-language models.
We demonstrate how M2IB can be applied to attribution analysis of vision-language pretrained models.
arXiv Detail & Related papers (2023-12-28T18:02:22Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task.
We present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes.
arXiv Detail & Related papers (2023-12-21T11:45:28Z) - CLIP-based Synergistic Knowledge Transfer for Text-based Person
Retrieval [66.93563107820687]
We introduce a CLIP-based Synergistic Knowledge Transfer (CSKT) approach for Person Retrieval (TPR)
To explore the CLIP's knowledge on input side, we first propose a Bidirectional Prompts Transferring (BPT) module constructed by text-to-image and image-to-text bidirectional prompts and coupling projections.
CSKT outperforms the state-of-the-art approaches across three benchmark datasets when the training parameters merely account for 7.4% of the entire model.
arXiv Detail & Related papers (2023-09-18T05:38:49Z) - Medical Knowledge-enriched Textual Entailment Framework [5.493804101940195]
We present a novel Medical Knowledge-Enriched Textual Entailment framework.
We evaluate our framework on the benchmark MEDIQA-RQE dataset and manifest that the use of knowledge enriched dual-encoding mechanism help in achieving an absolute improvement of 8.27% over SOTA language models.
arXiv Detail & Related papers (2020-11-10T17:25:27Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.