論文の概要: Shift Happens: Mixture of Experts based Continual Adaptation in Federated Learning
- arxiv url: http://arxiv.org/abs/2506.18789v1
- Date: Mon, 23 Jun 2025 15:59:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:37.070783
- Title: Shift Happens: Mixture of Experts based Continual Adaptation in Federated Learning
- Title(参考訳): シフトが起こる: フェデレートラーニングにおけるエキスパートによる継続的な適応の混合
- Authors: Rahul Atul Bhope, K. R. Jayaram, Praveen Venkateswaran, Nalini Venkatasubramanian,
- Abstract要約: フェデレートラーニング(FL)は、生データを共有することなく、分散クライアント間で協調的なモデルトレーニングを可能にする。
我々は,検出された分散シフトに応じて,特殊なグローバルモデルを作成し,訓練する専門家フレームワークのシフト対応ミックスであるShiftExを紹介する。
本研究では,5.5-12.9ポイントの精度向上と22-95%の適応率を示す。
- 参考スコア(独自算出の注目度): 3.120955853908236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables collaborative model training across decentralized clients without sharing raw data, yet faces significant challenges in real-world settings where client data distributions evolve dynamically over time. This paper tackles the critical problem of covariate and label shifts in streaming FL environments, where non-stationary data distributions degrade model performance and require adaptive middleware solutions. We introduce ShiftEx, a shift-aware mixture of experts framework that dynamically creates and trains specialized global models in response to detected distribution shifts using Maximum Mean Discrepancy for covariate shifts. The framework employs a latent memory mechanism for expert reuse and implements facility location-based optimization to jointly minimize covariate mismatch, expert creation costs, and label imbalance. Through theoretical analysis and comprehensive experiments on benchmark datasets, we demonstrate 5.5-12.9 percentage point accuracy improvements and 22-95 % faster adaptation compared to state-of-the-art FL baselines across diverse shift scenarios. The proposed approach offers a scalable, privacy-preserving middleware solution for FL systems operating in non-stationary, real-world conditions while minimizing communication and computational overhead.
- Abstract(参考訳): Federated Learning(FL)は、生データを共有せずに分散化されたクライアント間で協調的なモデルトレーニングを可能にするが、クライアントデータの分散が時間とともに動的に進化する現実世界では大きな課題に直面している。
本稿では,非定常データ分散がモデル性能を低下させ,適応的なミドルウェアソリューションを必要とするストリーミングFL環境における共変量およびラベルシフトの致命的な問題に対処する。
シフトアウェアな専門家フレームワークであるShiftExを紹介する。このフレームワークは,検出された分布シフトに応じて,共変量シフトに最大平均離散値を用いて,特別なグローバルモデルを動的に生成し,訓練する。
このフレームワークは、専門家の再利用に潜伏するメモリメカニズムを採用し、共変量ミスマッチ、エキスパート作成コスト、ラベルの不均衡を最小化するために、施設位置に基づく最適化を実装している。
ベンチマークデータセットに関する理論的解析と総合実験を通じて、様々なシフトシナリオにおける最先端FLベースラインと比較して、5.5~12.9ポイント精度の改善と22~95%の適応性を実証した。
提案手法は,通信と計算オーバーヘッドを最小限に抑えつつ,静止的でない実環境で動作するFLシステムに対して,スケーラブルでプライバシ保護可能なミドルウェアソリューションを提供する。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
Federated Learning [9.975023463908496]
Federated Learning(FL)は、クライアントがローカルトレーニングデータを共有せずに、局所的にトレーニングされたモデルを集約することで、グローバルモデルの共同トレーニングを可能にする機械学習パラダイムである。
本稿では,適応自己蒸留(ASD)に基づく新たな正規化手法を提案する。
我々の正規化方式は,グローバルモデルエントロピーとクライアントのラベル分布に基づいて,クライアントのトレーニングデータに適応的に適応的に適応する。
論文 参考訳(メタデータ) (2023-05-31T07:00:42Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
フェデレートラーニングは、統一グローバルモデルの学習を協調するために、異種データを持つ多数のクライアントを可能にする。
標準FLアルゴリズムは、サーバのグローバルモデルを近似するために、モデルパラメータや勾配の更新を平均化する。
本稿では,クライアント更新の標準平均化の代替として,FLの勾配マスク平均化手法を提案する。
論文 参考訳(メタデータ) (2022-01-28T08:42:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。