論文の概要: OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
- arxiv url: http://arxiv.org/abs/2506.18798v1
- Date: Mon, 23 Jun 2025 16:03:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:37.079145
- Title: OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
- Title(参考訳): OC-SOP:物体中心認識による視覚に基づく3次元セマンティック動作予測の強化
- Authors: Helin Cao, Sven Behnke,
- Abstract要約: 本稿では,検出ブランチから抽出した高レベルなオブジェクト中心キューを,意味的占有率予測パイプラインに統合するフレームワークを提案する。
このオブジェクト中心の統合により、前景オブジェクトの予測精度が大幅に向上する。
- 参考スコア(独自算出の注目度): 18.342569823885864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous driving perception faces significant challenges due to occlusions and incomplete scene data in the environment. To overcome these issues, the task of semantic occupancy prediction (SOP) is proposed, which aims to jointly infer both the geometry and semantic labels of a scene from images. However, conventional camera-based methods typically treat all categories equally and primarily rely on local features, leading to suboptimal predictions, especially for dynamic foreground objects. To address this, we propose Object-Centric SOP (OC-SOP), a framework that integrates high-level object-centric cues extracted via a detection branch into the semantic occupancy prediction pipeline. This object-centric integration significantly enhances the prediction accuracy for foreground objects and achieves state-of-the-art performance among all categories on SemanticKITTI.
- Abstract(参考訳): 自律運転知覚は、環境における閉塞と不完全なシーンデータのために重大な課題に直面している。
これらの課題を克服するために,画像からシーンの幾何学的ラベルと意味的ラベルの両方を共同で推測することを目的とした,意味的占有予測(SOP)タスクを提案する。
しかし、従来のカメラベースの手法では、全てのカテゴリを等しく扱い、主に局所的な特徴に依存しており、特に動的前景オブジェクトの最適下予測につながっている。
そこで本研究では,検出ブランチから抽出した高レベルなオブジェクト中心キューをセマンティック占有予測パイプラインに統合するフレームワークであるObject-Centric SOP(OC-SOP)を提案する。
このオブジェクト中心の統合により、前景オブジェクトの予測精度が大幅に向上し、SemanticKITTIの全カテゴリで最先端のパフォーマンスが達成される。
関連論文リスト
- BoxDreamer: Dreaming Box Corners for Generalizable Object Pose Estimation [58.14071520415005]
本稿では、スパースビュー設定における課題に対処するために、オブジェクトポーズ推定のための汎用RGBベースのアプローチを提案する。
これらの制約を克服するために、オブジェクトのポーズの中間表現としてオブジェクト境界ボックスのコーナーポイントを導入する。
3Dオブジェクトコーナーはスパース入力ビューから確実に復元でき、対象ビューの2Dコーナーポイントは、新しい参照ベースポイントデータセットによって推定される。
論文 参考訳(メタデータ) (2025-04-10T17:58:35Z) - Hierarchical Context Alignment with Disentangled Geometric and Temporal Modeling for Semantic Occupancy Prediction [61.484280369655536]
カメラを用いた3Dセマンティック占領予測(SOP)は、限られた2次元画像観察から複雑な3Dシーンを理解するのに不可欠である。
既存のSOPメソッドは通常、占有表現学習を支援するためにコンテキストの特徴を集約する。
より正確なSOP(Hi-SOP)のための新しい階層型コンテキストアライメントパラダイムを導入する。
論文 参考訳(メタデータ) (2024-12-11T09:53:10Z) - Towards Flexible 3D Perception: Object-Centric Occupancy Completion Augments 3D Object Detection [54.78470057491049]
占領は3Dシーンの知覚に有望な代替手段として現れてきた。
オブジェクトbboxのサプリメントとして,オブジェクト中心の占有率を導入する。
これらの特徴は,最先端の3Dオブジェクト検出器の検出結果を著しく向上させることを示した。
論文 参考訳(メタデータ) (2024-12-06T16:12:38Z) - Boosting Gaze Object Prediction via Pixel-level Supervision from Vision Foundation Model [19.800353299691277]
本稿では,人間の視線行動によって捉えた被写体に対応する画素レベルのマスクを推定する,より困難な視線オブジェクトセグメンテーション(GOS)タスクを提案する。
そこで本研究では,実環境におけるモデルの推論効率と柔軟性を確保するために,シーン特徴から頭部特徴を自動的に取得することを提案する。
論文 参考訳(メタデータ) (2024-08-02T06:32:45Z) - Monocular Per-Object Distance Estimation with Masked Object Modeling [33.59920084936913]
本稿では、Masked Image Modeling (MiM) からインスピレーションを得て、マルチオブジェクトタスクに拡張する。
Masked Object Modeling (MoM) と呼ばれる我々の戦略は、マスキング技術の新しい応用を可能にする。
我々は、標準KITTI、NuScenes、MOT Synthデータセット上の新しい参照アーキテクチャ(DistFormer)におけるMoMの有効性を評価する。
論文 参考訳(メタデータ) (2024-01-06T10:56:36Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Sharp Eyes: A Salient Object Detector Working The Same Way as Human
Visual Characteristics [3.222802562733787]
本稿では,まず被写体をシーンから分離し,それを細分化するシャープアイネットワーク(SENet)を提案する。
提案手法は,拡張オブジェクトを用いてネットワークを誘導し,完全な予測を行う。
論文 参考訳(メタデータ) (2023-01-18T11:00:45Z) - CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation [67.12857074801731]
そこで本研究では,シミュレートからリアルなポーズ推定のための新しい手法であるCPPF++を提案する。
投票衝突による課題に対処するため,投票の不確実性をモデル化する新たなアプローチを提案する。
ノイズの多いペアフィルタリング、オンラインアライメント最適化、機能アンサンブルなど、いくつかの革新的なモジュールを組み込んでいます。
論文 参考訳(メタデータ) (2022-11-24T03:27:00Z) - ProposalContrast: Unsupervised Pre-training for LiDAR-based 3D Object
Detection [114.54835359657707]
ProposalContrastは、教師なしのポイントクラウド事前トレーニングフレームワークである。
地域提案と対比することで、堅牢な3D表現を学習する。
ProposalContrastは様々な3D検出器で検証される。
論文 参考訳(メタデータ) (2022-07-26T04:45:49Z) - SORNet: Spatial Object-Centric Representations for Sequential
Manipulation [39.88239245446054]
シーケンシャルな操作タスクでは、ロボットが環境の状態を認識し、望ましい目標状態につながる一連のアクションを計画する必要がある。
本研究では,対象対象の標準視に基づくRGB画像からオブジェクト中心表現を抽出するSORNetを提案する。
論文 参考訳(メタデータ) (2021-09-08T19:36:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。