Learning Physical Systems: Symplectification via Gauge Fixing in Dirac Structures
- URL: http://arxiv.org/abs/2506.18812v1
- Date: Mon, 23 Jun 2025 16:23:37 GMT
- Title: Learning Physical Systems: Symplectification via Gauge Fixing in Dirac Structures
- Authors: Aristotelis Papatheodorou, Pranav Vaidhyanathan, Natalia Ares, Ioannis Havoutis,
- Abstract summary: We introduce Presymplectification Networks (PSNs), the first framework to learn the symplectification lift via Dirac structures.<n>Our architecture combines a recurrent encoder with a flow-matching objective to learn the augmented phase-space dynamics end-to-end.<n>We then attach a lightweight Symplectic Network (SympNet) to forecast constrained trajectories while preserving energy, momentum, and constraint satisfaction.
- Score: 8.633430288397376
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics-informed deep learning has achieved remarkable progress by embedding geometric priors, such as Hamiltonian symmetries and variational principles, into neural networks, enabling structure-preserving models that extrapolate with high accuracy. However, in systems with dissipation and holonomic constraints, ubiquitous in legged locomotion and multibody robotics, the canonical symplectic form becomes degenerate, undermining the very invariants that guarantee stability and long-term prediction. In this work, we tackle this foundational limitation by introducing Presymplectification Networks (PSNs), the first framework to learn the symplectification lift via Dirac structures, restoring a non-degenerate symplectic geometry by embedding constrained systems into a higher-dimensional manifold. Our architecture combines a recurrent encoder with a flow-matching objective to learn the augmented phase-space dynamics end-to-end. We then attach a lightweight Symplectic Network (SympNet) to forecast constrained trajectories while preserving energy, momentum, and constraint satisfaction. We demonstrate our method on the dynamics of the ANYmal quadruped robot, a challenging contact-rich, multibody system. To the best of our knowledge, this is the first framework that effectively bridges the gap between constrained, dissipative mechanical systems and symplectic learning, unlocking a whole new class of geometric machine learning models, grounded in first principles yet adaptable from data.
Related papers
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.<n>The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.<n>Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Learning Integrable Dynamics with Action-Angle Networks [1.2999518604217852]
Action-Angle Networks learn a nonlinear transformation from input coordinates to the action-angle space, where evolution of the system is linear.
Unlike traditional learned simulators, Action-Angle Networks do not employ any higher-order numerical integration methods.
arXiv Detail & Related papers (2022-11-24T17:37:20Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - NN-EUCLID: deep-learning hyperelasticity without stress data [0.0]
We propose a new approach for unsupervised learning of hyperelastic laws with physics-consistent deep neural networks.
In contrast to supervised learning, which assumes the stress-strain, the approach only uses realistically measurable full-elastic field displacement and global force availability data.
arXiv Detail & Related papers (2022-05-04T13:54:54Z) - Symplectic Momentum Neural Networks -- Using Discrete Variational
Mechanics as a prior in Deep Learning [7.090165638014331]
This paper introduces Sympic Momentum Networks (SyMo) as models from a discrete formulation of mechanics for non-separable mechanical systems.
We show that such combination not only allows these models tol earn from limited data but also provides the models with the capability of preserving the symplectic form and show better long-term behaviour.
arXiv Detail & Related papers (2022-01-20T16:33:19Z) - Learning without gradient descent encoded by the dynamics of a
neurobiological model [7.952666139462592]
We introduce a conceptual approach to machine learning that takes advantage of a neurobiologically derived model of dynamic signaling.
We show that MNIST images can be uniquely encoded and classified by the dynamics of geometric networks with nearly state-of-the-art accuracy in an unsupervised way.
arXiv Detail & Related papers (2021-03-16T07:03:04Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Learning Physical Constraints with Neural Projections [16.09436906471513]
We propose a new family of neural networks to predict the behaviors of physical systems by learning their underpinning constraints.
A neural projection operator lies at the heart of our approach, composed of a lightweight network with an embedded recursion architecture.
We demonstrated the efficacy of our approach by learning a set of challenging physical systems all in a unified and simple fashion.
arXiv Detail & Related papers (2020-06-23T04:19:04Z) - Hyperbolic Neural Networks++ [66.16106727715061]
We generalize the fundamental components of neural networks in a single hyperbolic geometry model, namely, the Poincar'e ball model.
Experiments show the superior parameter efficiency of our methods compared to conventional hyperbolic components, and stability and outperformance over their Euclidean counterparts.
arXiv Detail & Related papers (2020-06-15T08:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.