Learning Integrable Dynamics with Action-Angle Networks
- URL: http://arxiv.org/abs/2211.15338v1
- Date: Thu, 24 Nov 2022 17:37:20 GMT
- Title: Learning Integrable Dynamics with Action-Angle Networks
- Authors: Ameya Daigavane, Arthur Kosmala, Miles Cranmer, Tess Smidt, Shirley Ho
- Abstract summary: Action-Angle Networks learn a nonlinear transformation from input coordinates to the action-angle space, where evolution of the system is linear.
Unlike traditional learned simulators, Action-Angle Networks do not employ any higher-order numerical integration methods.
- Score: 1.2999518604217852
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning has become increasingly popular for efficiently modelling
the dynamics of complex physical systems, demonstrating a capability to learn
effective models for dynamics which ignore redundant degrees of freedom.
Learned simulators typically predict the evolution of the system in a
step-by-step manner with numerical integration techniques. However, such models
often suffer from instability over long roll-outs due to the accumulation of
both estimation and integration error at each prediction step. Here, we propose
an alternative construction for learned physical simulators that are inspired
by the concept of action-angle coordinates from classical mechanics for
describing integrable systems. We propose Action-Angle Networks, which learn a
nonlinear transformation from input coordinates to the action-angle space,
where evolution of the system is linear. Unlike traditional learned simulators,
Action-Angle Networks do not employ any higher-order numerical integration
methods, making them extremely efficient at modelling the dynamics of
integrable physical systems.
Related papers
- LeARN: Learnable and Adaptive Representations for Nonlinear Dynamics in System Identification [0.0]
We introduce a nonlinear system identification framework called LeARN.
It transcends the need for prior domain knowledge by learning the library of basis functions directly from data.
We validate our framework on the Neural Fly dataset, showcasing its robust adaptation and capabilities.
arXiv Detail & Related papers (2024-12-16T18:03:23Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
We present a systematic framework that bridges large scale simulations and reduced order models to Learn the Effective Dynamics.
LED provides a novel potent modality for the accurate prediction of complex systems.
LED is applicable to systems ranging from chemistry to fluid mechanics and reduces computational effort by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-24T02:35:51Z) - Accurately Solving Physical Systems with Graph Learning [22.100386288615006]
We introduce a novel method to accelerate iterative solvers for physical systems with graph networks.
Unlike existing methods that aim to learn physical systems in an end-to-end manner, our approach guarantees long-term stability.
Our method improves the run time performance of traditional iterative solvers.
arXiv Detail & Related papers (2020-06-06T15:48:34Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.