論文の概要: 4Real-Video-V2: Fused View-Time Attention and Feedforward Reconstruction for 4D Scene Generation
- arxiv url: http://arxiv.org/abs/2506.18839v1
- Date: Wed, 18 Jun 2025 23:44:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:37.092088
- Title: 4Real-Video-V2: Fused View-Time Attention and Feedforward Reconstruction for 4D Scene Generation
- Title(参考訳): 4Real-Video-V2:4次元シーン生成のためのビュータイムアテンションとフィードフォワード再構成
- Authors: Chaoyang Wang, Ashkan Mirzaei, Vidit Goel, Willi Menapace, Aliaksandr Siarohin, Avalon Vinella, Michael Vasilkovsky, Ivan Skorokhodov, Vladislav Shakhrai, Sergey Korolev, Sergey Tulyakov, Peter Wonka,
- Abstract要約: 本稿では,映像フレームの4次元時間格子と3次元ガウス粒子の時間ステップ毎にフィードフォワードアーキテクチャを用いて計算可能な最初のフレームワークを提案する。
まず,2ストリーム設計において,空間的および時間的注意を連続的に,あるいは並列に行う4次元ビデオ拡散アーキテクチャを解析する。
第2部では、ガウスヘッド、カメラトークン置換アルゴリズム、追加の動的レイヤとトレーニングを導入し、既存の3D再構成アルゴリズムを拡張した。
- 参考スコア(独自算出の注目度): 66.20991603309054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the first framework capable of computing a 4D spatio-temporal grid of video frames and 3D Gaussian particles for each time step using a feed-forward architecture. Our architecture has two main components, a 4D video model and a 4D reconstruction model. In the first part, we analyze current 4D video diffusion architectures that perform spatial and temporal attention either sequentially or in parallel within a two-stream design. We highlight the limitations of existing approaches and introduce a novel fused architecture that performs spatial and temporal attention within a single layer. The key to our method is a sparse attention pattern, where tokens attend to others in the same frame, at the same timestamp, or from the same viewpoint. In the second part, we extend existing 3D reconstruction algorithms by introducing a Gaussian head, a camera token replacement algorithm, and additional dynamic layers and training. Overall, we establish a new state of the art for 4D generation, improving both visual quality and reconstruction capability.
- Abstract(参考訳): 本稿では,映像フレームの4次元時空間格子と3次元ガウス粒子の時間ステップ毎にフィードフォワードアーキテクチャを用いて計算可能な最初のフレームワークを提案する。
アーキテクチャには4Dビデオモデルと4D再構成モデルという2つの主要コンポーネントがある。
まず,2ストリーム設計において,空間的および時間的注意を連続的に,あるいは並列に行う4次元ビデオ拡散アーキテクチャを解析する。
既存のアプローチの限界を強調し、単一層内で空間的・時間的注意を喚起する新しい融合アーキテクチャを導入する。
この手法の鍵となるのは、トークンが同じフレーム、同じタイムスタンプ、または同じ視点で他の人に出席するスパースアテンションパターンである。
第2部では、ガウスヘッド、カメラトークン置換アルゴリズム、追加の動的レイヤとトレーニングを導入し、既存の3D再構成アルゴリズムを拡張した。
全体として、4D生成のための新しい最先端技術を確立し、視覚的品質と再構築能力の両方を改善した。
関連論文リスト
- 4D-LRM: Large Space-Time Reconstruction Model From and To Any View at Any Time [74.07107064085409]
4D-LRMは、制約のないビューとタイムスタンプから入力を受け取り、任意のビュータイムの組み合わせをレンダリングする最初の大規模4D再構成モデルである。
統合された時空表現を学習し、時間を通してポーズされた画像トークンからピクセルごとの4Dガウスプリミティブを直接予測する。
1つのA100 GPU上で1.5秒未満で、24フレームのシーケンスを1フォワードパスで再構築する。
論文 参考訳(メタデータ) (2025-06-23T17:57:47Z) - Zero4D: Training-Free 4D Video Generation From Single Video Using Off-the-Shelf Video Diffusion [52.0192865857058]
そこで,本研究では,市販ビデオ拡散モデルを利用して,単一入力ビデオから多視点ビデオを生成する4Dビデオ生成手法を提案する。
本手法はトレーニング不要で,市販のビデオ拡散モデルを完全に活用し,マルチビュービデオ生成のための実用的で効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2025-03-28T17:14:48Z) - Can Video Diffusion Model Reconstruct 4D Geometry? [66.5454886982702]
Sora3Rは、カジュアルなビデオから4Dのポイントマップを推測するために、大きなダイナミックビデオ拡散モデルのリッチ・テンポラリなテンポラリなテンポラリな時間を利用する新しいフレームワークである。
実験により、Sora3Rはカメラのポーズと詳細なシーン形状の両方を確実に復元し、動的4D再構成のための最先端の手法と同等の性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-03-27T01:44:46Z) - Free4D: Tuning-free 4D Scene Generation with Spatial-Temporal Consistency [49.875459658889355]
Free4Dは、単一の画像から4Dシーンを生成するためのチューニング不要のフレームワークである。
我々の重要な洞察は、一貫した4次元シーン表現のために、事前訓練された基礎モデルを蒸留することである。
結果の4D表現はリアルタイムで制御可能なレンダリングを可能にする。
論文 参考訳(メタデータ) (2025-03-26T17:59:44Z) - DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion [22.11178016375823]
DimensionXは、ビデオ拡散を伴う単一の画像から3Dと4Dのシーンを生成するように設計されたフレームワークである。
提案手法は,3次元シーンの空間構造と4次元シーンの時間的進化の両方が,映像フレームのシーケンスを通して効果的に表現できるという知見から始まった。
論文 参考訳(メタデータ) (2024-11-07T18:07:31Z) - Controlling Space and Time with Diffusion Models [34.7002868116714]
4次元新規ビュー合成(NVS)のためのケースド拡散モデルである4DiMを提案する。
我々は3D(カメラポーズ付き)、4D(目的+時間)、ビデオ(時間だがポーズなし)のデータを混合してトレーニングすることができる。
4DiMは、直感的なメートルスケールカメラポーズ制御を備えた最初のNVS方式である。
論文 参考訳(メタデータ) (2024-07-10T17:23:33Z) - NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed
Neural Radiance Fields [99.57774680640581]
本稿では、高速な再構成、コンパクトなモデリング、およびストリーム可能なレンダリングが可能な効率的なフレームワークを提案する。
本稿では, 時間特性に応じて4次元空間を分解することを提案する。4次元空間の点は, 静的, 変形, および新しい領域の3つのカテゴリに属する確率に関連付けられている。
論文 参考訳(メタデータ) (2022-10-28T07:11:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。