From Tiny Machine Learning to Tiny Deep Learning: A Survey
- URL: http://arxiv.org/abs/2506.18927v2
- Date: Wed, 25 Jun 2025 21:42:13 GMT
- Title: From Tiny Machine Learning to Tiny Deep Learning: A Survey
- Authors: Shriyank Somvanshi, Md Monzurul Islam, Gaurab Chhetri, Rohit Chakraborty, Mahmuda Sultana Mimi, Sawgat Ahmed Shuvo, Kazi Sifatul Islam, Syed Aaqib Javed, Sharif Ahmed Rafat, Anandi Dutta, Subasish Das,
- Abstract summary: The rapid growth of edge devices has driven the demand for deploying artificial intelligence (AI) at the edge.<n>The emergence of TinyDL marks a paradigm shift toward deploying deep learning models on severely resource-constrained hardware.<n>This survey aims to serve as a foundational resource for researchers and practitioners, offering a holistic view of the ecosystem.
- Score: 0.13281177137699654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of edge devices has driven the demand for deploying artificial intelligence (AI) at the edge, giving rise to Tiny Machine Learning (TinyML) and its evolving counterpart, Tiny Deep Learning (TinyDL). While TinyML initially focused on enabling simple inference tasks on microcontrollers, the emergence of TinyDL marks a paradigm shift toward deploying deep learning models on severely resource-constrained hardware. This survey presents a comprehensive overview of the transition from TinyML to TinyDL, encompassing architectural innovations, hardware platforms, model optimization techniques, and software toolchains. We analyze state-of-the-art methods in quantization, pruning, and neural architecture search (NAS), and examine hardware trends from MCUs to dedicated neural accelerators. Furthermore, we categorize software deployment frameworks, compilers, and AutoML tools enabling practical on-device learning. Applications across domains such as computer vision, audio recognition, healthcare, and industrial monitoring are reviewed to illustrate the real-world impact of TinyDL. Finally, we identify emerging directions including neuromorphic computing, federated TinyDL, edge-native foundation models, and domain-specific co-design approaches. This survey aims to serve as a foundational resource for researchers and practitioners, offering a holistic view of the ecosystem and laying the groundwork for future advancements in edge AI.
Related papers
- PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing [48.30406812516552]
We introduce the PLM, a Peripheral Language Model, developed through a co-design process that jointly optimize model architecture and edge system constraints.<n>PLM employs a Multi-head Latent Attention mechanism and employs the squared ReLU activation function to encourage sparsity, thereby reducing peak memory footprint.<n> evaluation results demonstrate that PLM outperforms existing small language models trained on publicly available data.
arXiv Detail & Related papers (2025-03-15T15:11:17Z) - A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning [67.72413262980272]
Pre-trained vision models (PVMs) are fundamental to modern robotics, yet their optimal configuration remains unclear.<n>We develop SlotMIM, a method that induces object-centric representations by introducing a semantic bottleneck.<n>Our approach achieves significant improvements over prior work in image recognition, scene understanding, and robot learning evaluations.
arXiv Detail & Related papers (2025-03-10T06:18:31Z) - NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals [58.83169560132308]
We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of the representations and computations learned by very large neural networks.
arXiv Detail & Related papers (2024-07-18T17:59:01Z) - Efficient Neural Networks for Tiny Machine Learning: A Comprehensive
Review [1.049712834719005]
This review provides an in-depth analysis of the advancements in efficient neural networks and the deployment of deep learning models on ultra-low power microcontrollers.
The core of the review centres on efficient neural networks for TinyML.
It covers techniques such as model compression, quantization, and low-rank factorization, which optimize neural network architectures for minimal resource utilization.
The paper then delves into the deployment of deep learning models on ultra-low power MCUs, addressing challenges such as limited computational capabilities and memory resources.
arXiv Detail & Related papers (2023-11-20T16:20:13Z) - A Machine Learning-oriented Survey on Tiny Machine Learning [9.690117347832722]
The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence.
TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused computing technologies.
arXiv Detail & Related papers (2023-09-21T09:47:12Z) - A review of TinyML [0.0]
The TinyML concept for embedded machine learning attempts to push such diversity from usual high-end approaches to low-end applications.
TinyML is a rapidly expanding interdisciplinary topic at the convergence of machine learning, software, and hardware.
This paper explores how TinyML can benefit a few specific industrial fields, its obstacles, and its future scope.
arXiv Detail & Related papers (2022-11-05T06:02:08Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
Machine learning (ML) has become a pervasive tool across computing systems.
Tiny robot learning is the deployment of ML on resource-constrained low-cost autonomous robots.
Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints.
This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
arXiv Detail & Related papers (2022-05-11T19:36:15Z) - Enable Deep Learning on Mobile Devices: Methods, Systems, and
Applications [46.97774949613859]
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI)
However, their superior performance comes at the considerable cost of computational complexity.
This paper provides an overview of efficient deep learning methods, systems and applications.
arXiv Detail & Related papers (2022-04-25T16:52:48Z) - Software Engineering Approaches for TinyML based IoT Embedded Vision: A
Systematic Literature Review [0.0]
Internet of Things (IoT) has joined forces with Machine Learning (ML) to embed deep intelligence at the far edge.
TinyML (Tiny Machine Learning) has enabled the deployment of ML models for embedded vision on extremely lean edge hardware.
TinyML powered embedded vision applications are still in a nascent stage, and they are just starting to scale to widespread real-world IoT deployment.
arXiv Detail & Related papers (2022-04-19T07:07:41Z) - How to Manage Tiny Machine Learning at Scale: An Industrial Perspective [5.384059021764428]
Tiny machine learning (TinyML) has gained widespread popularity where machine learning (ML) is democratized on ubiquitous microcontrollers.
TinyML models have been developed with different structures and are often distributed without a clear understanding of their working principles.
We propose a framework using Semantic Web technologies to enable the joint management of TinyML models and IoT devices at scale.
arXiv Detail & Related papers (2022-02-18T10:36:11Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.