Software Engineering Approaches for TinyML based IoT Embedded Vision: A
Systematic Literature Review
- URL: http://arxiv.org/abs/2204.08702v1
- Date: Tue, 19 Apr 2022 07:07:41 GMT
- Title: Software Engineering Approaches for TinyML based IoT Embedded Vision: A
Systematic Literature Review
- Authors: Shashank Bangalore Lakshman and Nasir U. Eisty
- Abstract summary: Internet of Things (IoT) has joined forces with Machine Learning (ML) to embed deep intelligence at the far edge.
TinyML (Tiny Machine Learning) has enabled the deployment of ML models for embedded vision on extremely lean edge hardware.
TinyML powered embedded vision applications are still in a nascent stage, and they are just starting to scale to widespread real-world IoT deployment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Internet of Things (IoT) has catapulted human ability to control our
environments through ubiquitous sensing, communication, computation, and
actuation. Over the past few years, IoT has joined forces with Machine Learning
(ML) to embed deep intelligence at the far edge. TinyML (Tiny Machine Learning)
has enabled the deployment of ML models for embedded vision on extremely lean
edge hardware, bringing the power of IoT and ML together. However, TinyML
powered embedded vision applications are still in a nascent stage, and they are
just starting to scale to widespread real-world IoT deployment. To harness the
true potential of IoT and ML, it is necessary to provide product developers
with robust, easy-to-use software engineering (SE) frameworks and best
practices that are customized for the unique challenges faced in TinyML
engineering. Through this systematic literature review, we aggregated the key
challenges reported by TinyML developers and identified state-of-art SE
approaches in large-scale Computer Vision, Machine Learning, and Embedded
Systems that can help address key challenges in TinyML based IoT embedded
vision. In summary, our study draws synergies between SE expertise that
embedded systems developers and ML developers have independently developed to
help address the unique challenges in the engineering of TinyML based IoT
embedded vision.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - A Machine Learning-oriented Survey on Tiny Machine Learning [9.690117347832722]
The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence.
TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused computing technologies.
arXiv Detail & Related papers (2023-09-21T09:47:12Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - TinyML: Tools, Applications, Challenges, and Future Research Directions [2.9398911304923456]
TinyML is an embedded machine learning technique that enables ML applications on cheap, resource- and power-constrained devices.
This article reviews various avenues available for TinyML implementation.
arXiv Detail & Related papers (2023-03-23T15:29:48Z) - A review of TinyML [0.0]
The TinyML concept for embedded machine learning attempts to push such diversity from usual high-end approaches to low-end applications.
TinyML is a rapidly expanding interdisciplinary topic at the convergence of machine learning, software, and hardware.
This paper explores how TinyML can benefit a few specific industrial fields, its obstacles, and its future scope.
arXiv Detail & Related papers (2022-11-05T06:02:08Z) - SeLoC-ML: Semantic Low-Code Engineering for Machine Learning
Applications in Industrial IoT [9.477629856092218]
This paper presents a framework called Semantic Low-Code Engineering for ML Applications (SeLoC-ML)
SeLoC-ML enables non-experts to model, discover, reuse, and matchmake ML models and devices at scale.
Developers can benefit from semantic application templates, called recipes, to fast prototype end-user applications.
arXiv Detail & Related papers (2022-07-18T13:06:21Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
Machine learning (ML) has become a pervasive tool across computing systems.
Tiny robot learning is the deployment of ML on resource-constrained low-cost autonomous robots.
Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints.
This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
arXiv Detail & Related papers (2022-05-11T19:36:15Z) - How to Manage Tiny Machine Learning at Scale: An Industrial Perspective [5.384059021764428]
Tiny machine learning (TinyML) has gained widespread popularity where machine learning (ML) is democratized on ubiquitous microcontrollers.
TinyML models have been developed with different structures and are often distributed without a clear understanding of their working principles.
We propose a framework using Semantic Web technologies to enable the joint management of TinyML models and IoT devices at scale.
arXiv Detail & Related papers (2022-02-18T10:36:11Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.