論文の概要: Advanced Applications of Generative AI in Actuarial Science: Case Studies Beyond ChatGPT
- arxiv url: http://arxiv.org/abs/2506.18942v1
- Date: Sun, 22 Jun 2025 19:36:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.304333
- Title: Advanced Applications of Generative AI in Actuarial Science: Case Studies Beyond ChatGPT
- Title(参考訳): アクチュアリ科学における生成AIの先進的応用:ChatGPT以外のケーススタディ
- Authors: Simon Hatzesberger, Iris Nonneman,
- Abstract要約: 本稿では,4つのケーススタディで示される,ジェネレーティブAI(GenAI)がアクチュアリ科学に与える影響を実証する。
最初のケーススタディでは、構造化されていないテキストデータから重要な特徴を引き出すことにより、LLM(Large Language Models)がクレームコスト予測をどのように改善するかを示す。
第2のケーススタディでは、GenAIの概念であるRetrieval-Augmented Generationを用いて、市場比較の自動化について検討している。
第3のケーススタディでは、自動車の損傷タイプを分類し、文脈情報を抽出する、微調整可能なLCMの能力を強調している。
第4のケーススタディでは、与えられたデータセットからデータを自律的に分析し、生成するマルチエージェントシステムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article demonstrates the transformative impact of Generative AI (GenAI) on actuarial science, illustrated by four implemented case studies. It begins with a historical overview of AI, tracing its evolution from early neural networks to modern GenAI technologies. The first case study shows how Large Language Models (LLMs) improve claims cost prediction by deriving significant features from unstructured textual data, significantly reducing prediction errors in the underlying machine learning task. In the second case study, we explore the automation of market comparisons using the GenAI concept of Retrieval-Augmented Generation to identify and process relevant information from documents. A third case study highlights the capabilities of fine-tuned vision-enabled LLMs in classifying car damage types and extracting contextual information. The fourth case study presents a multi-agent system that autonomously analyzes data from a given dataset and generates a corresponding report detailing the key findings. In addition to these case studies, we outline further potential applications of GenAI in the insurance industry, such as the automation of claims processing and fraud detection, and the verification of document compliance with internal or external policies. Finally, we discuss challenges and considerations associated with the use of GenAI, covering regulatory issues, ethical concerns, and technical limitations, among others.
- Abstract(参考訳): 本稿では,4つのケーススタディで示される,ジェネレーティブAI(GenAI)のアクチュエータ科学への影響を実証する。
それはAIの歴史的概要から始まり、初期のニューラルネットワークから現代のGenAI技術への進化を辿る。
最初のケーススタディでは、Large Language Models (LLMs) が非構造化テキストデータから重要な特徴を導き出し、基礎となる機械学習タスクにおける予測エラーを著しく低減することで、クレームコストの予測を改善する方法を示している。
第2のケーススタディでは,GenAIの概念であるRetrieval-Augmented Generationを用いて,文書から関連する情報を識別・処理する市場比較の自動化について検討する。
第3のケーススタディでは、自動車の損傷タイプを分類し、文脈情報を抽出する、微調整可能なLCMの能力を強調している。
第4のケーススタディでは、与えられたデータセットからデータを自律的に分析し、主要な発見を詳述した対応するレポートを生成するマルチエージェントシステムを提案する。
これらのケーススタディに加えて、クレーム処理の自動化や不正検出の自動化、内部・外部政策による文書コンプライアンスの検証など、保険業界におけるGenAIのさらなる応用の可能性について概説する。
最後に、規制問題、倫理的懸念、技術的な制約など、GenAIの使用に関連する課題と考察について論じる。
関連論文リスト
- Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
本稿では,生成型AIツールの利用の増加に伴って生じる複雑な情報ダイナミクスについて,新たな定量的アプローチを提案する。
本稿では,新たなトピックに応答して情報の生成,索引付け,普及を特徴付けるモデルを提案する。
以上の結果から,AI導入の急激なペースとユーザ依存度の増加は,不正確な情報拡散のリスクを増大させる可能性が示唆された。
論文 参考訳(メタデータ) (2025-04-29T10:21:40Z) - Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook [85.43403500874889]
Retrieval-augmented Generation (RAG) は人工知能(AI)において重要な技術である。
具体化されたAIのためのRAGの最近の進歩は、特に計画、タスク実行、マルチモーダル知覚、インタラクション、特殊ドメインの応用に焦点を当てている。
論文 参考訳(メタデータ) (2025-03-23T10:33:28Z) - Generative AI in Transportation Planning: A Survey [41.38132349994159]
我々は、交通計画においてGenAIを活用するための最初の包括的枠組みを提示する。
交通計画の観点から, 記述的, 予測的, 生成的, シミュレーション, 説明可能なタスクの自動化におけるGenAIの役割を検討する。
データ不足、説明可能性、バイアス軽減、ドメイン固有の評価フレームワークの開発など、重要な課題に対処する。
論文 参考訳(メタデータ) (2025-03-10T10:33:31Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Are Large Language Models Ready for Business Integration? A Study on Generative AI Adoption [0.6144680854063939]
本研究では,Google Geminiのような他の大規模言語モデル(LLM)のビジネスアプリケーションへの適用性について検討する。
ディズニーランドの異なる支店からの42,654件のレビューデータセットが採用された。
その結果、75%の成功率、25%のエラー、モデル自己参照の事例など、反応のスペクトルが示された。
論文 参考訳(メタデータ) (2025-01-28T21:01:22Z) - Exploring AI Text Generation, Retrieval-Augmented Generation, and Detection Technologies: a Comprehensive Overview [0.0]
独創性、偏見、誤情報、説明責任などの問題を含む、AI生成コンテンツを取り巻く懸念が顕在化している。
本稿では、AIテキストジェネレータ(AITG)の進化、能力、倫理的意味を概観する。
本稿では,検出精度の向上,倫理的AI開発支援,アクセシビリティ向上に向けた今後の方向性について検討する。
論文 参考訳(メタデータ) (2024-12-05T07:23:14Z) - Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - On the Limitations and Prospects of Machine Unlearning for Generative AI [7.795648142175443]
Generative AI(GenAI)は、潜伏変数やその他のデータモダリティから現実的で多様なデータサンプルを合成することを目的としている。
GenAIは自然言語、画像、オーディオ、グラフなど、さまざまな領域で顕著な成果を上げている。
しかし、データプライバシ、セキュリティ、倫理に課題やリスクも生じている。
論文 参考訳(メタデータ) (2024-08-01T08:35:40Z) - Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods [13.14749943120523]
テキストが人工知能(AI)によって作成されたかどうかを知ることは、その信頼性を決定する上で重要である。
AIGT検出に対する最先端のアプローチには、透かし、統計学的およびスタイリスティック分析、機械学習分類などがある。
AIGTテキストがどのようなシナリオで「検出可能」であるかを判断するために、結合する健全な要因についての洞察を提供することを目指している。
論文 参考訳(メタデータ) (2024-06-21T18:31:49Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。