Baba is LLM: Reasoning in a Game with Dynamic Rules
- URL: http://arxiv.org/abs/2506.19095v1
- Date: Mon, 23 Jun 2025 20:16:28 GMT
- Title: Baba is LLM: Reasoning in a Game with Dynamic Rules
- Authors: Fien van Wetten, Aske Plaat, Max van Duijn,
- Abstract summary: Large language models (LLMs) are known to perform well on language tasks, but struggle with reasoning tasks.<n>This paper explores the ability of LLMs to play the 2D puzzle game Baba is You.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are known to perform well on language tasks, but struggle with reasoning tasks. This paper explores the ability of LLMs to play the 2D puzzle game Baba is You, in which players manipulate rules by rearranging text blocks that define object properties. Given that this rule-manipulation relies on language abilities and reasoning, it is a compelling challenge for LLMs. Six LLMs are evaluated using different prompt types, including (1) simple, (2) rule-extended and (3) action-extended prompts. In addition, two models (Mistral, OLMo) are finetuned using textual and structural data from the game. Results show that while larger models (particularly GPT-4o) perform better in reasoning and puzzle solving, smaller unadapted models struggle to recognize game mechanics or apply rule changes. Finetuning improves the ability to analyze the game levels, but does not significantly improve solution formulation. We conclude that even for state-of-the-art and finetuned LLMs, reasoning about dynamic rule changes is difficult (specifically, understanding the use-mention distinction). The results provide insights into the applicability of LLMs to complex problem-solving tasks and highlight the suitability of games with dynamically changing rules for testing reasoning and reflection by LLMs.
Related papers
- lmgame-Bench: How Good are LLMs at Playing Games? [60.01834131847881]
We study the major challenges in using popular video games to evaluate modern large language model (LLM) agents.<n>We introduce lmgame-Bench to turn games into reliable evaluations.
arXiv Detail & Related papers (2025-05-21T06:02:55Z) - TextGames: Learning to Self-Play Text-Based Puzzle Games via Language Model Reasoning [26.680686158061192]
Reasoning is a fundamental capability of large language models (LLMs)<n>This paper introduces TextGames, a benchmark specifically crafted to assess LLMs through demanding text-based games.<n>Our findings reveal that although LLMs exhibit proficiency in addressing most easy and medium-level problems, they face significant challenges with more difficult tasks.
arXiv Detail & Related papers (2025-02-25T18:26:48Z) - Understanding the Dark Side of LLMs' Intrinsic Self-Correction [58.12627172032851]
Intrinsic self-correction was proposed to improve LLMs' responses via feedback prompts solely based on their inherent capability.<n>Recent works show that LLMs' intrinsic self-correction fails without oracle labels as feedback prompts.<n>We identify intrinsic self-correction can cause LLMs to waver both intermedia and final answers and lead to prompt bias on simple factual questions.
arXiv Detail & Related papers (2024-12-19T15:39:31Z) - GAMEBoT: Transparent Assessment of LLM Reasoning in Games [54.49589494014147]
GAMEBoT is a gaming arena designed for rigorous assessment of Large Language Models.<n>We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics.<n>Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts.
arXiv Detail & Related papers (2024-12-18T08:32:53Z) - RuleArena: A Benchmark for Rule-Guided Reasoning with LLMs in Real-World Scenarios [58.90106984375913]
RuleArena is a novel and challenging benchmark designed to evaluate the ability of large language models (LLMs) to follow complex, real-world rules in reasoning.<n> Covering three practical domains -- airline baggage fees, NBA transactions, and tax regulations -- RuleArena assesses LLMs' proficiency in handling intricate natural language instructions.
arXiv Detail & Related papers (2024-12-12T06:08:46Z) - Evaluating Creativity and Deception in Large Language Models: A Simulation Framework for Multi-Agent Balderdash [6.65572931991284]
Large Language Models (LLMs) have shown impressive capabilities in complex tasks and interactive environments.
This paper introduces a simulation framework utilizing the game Balderdash to evaluate both the creativity and logical reasoning of LLMs.
arXiv Detail & Related papers (2024-11-15T18:42:48Z) - LLMs May Not Be Human-Level Players, But They Can Be Testers: Measuring Game Difficulty with LLM Agents [10.632179121247466]
We propose a general game-testing framework using LLM agents and test it on two widely played strategy games: Wordle and Slay the Spire.
Our results reveal an interesting finding: although LLMs may not perform as well as the average human player, their performance, when guided by simple, generic prompting techniques, shows a statistically significant and strong correlation with difficulty indicated by human players.
This suggests that LLMs could serve as effective agents for measuring game difficulty during the development process.
arXiv Detail & Related papers (2024-10-01T18:40:43Z) - Are Large Language Models Strategic Decision Makers? A Study of Performance and Bias in Two-Player Non-Zero-Sum Games [56.70628673595041]
Large Language Models (LLMs) have been increasingly used in real-world settings, yet their strategic decision-making abilities remain largely unexplored.
This work investigates the performance and merits of LLMs in canonical game-theoretic two-player non-zero-sum games, Stag Hunt and Prisoner Dilemma.
Our structured evaluation of GPT-3.5, GPT-4-Turbo, GPT-4o, and Llama-3-8B shows that these models, when making decisions in these games, are affected by at least one of the following systematic biases.
arXiv Detail & Related papers (2024-07-05T12:30:02Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - Large Language Models can Learn Rules [106.40747309894236]
We present Hypotheses-to-Theories (HtT), a framework that learns a rule library for reasoning with large language models (LLMs)<n> Experiments on relational reasoning, numerical reasoning and concept learning problems show that HtT improves existing prompting methods.<n>The learned rules are also transferable to different models and to different forms of the same problem.
arXiv Detail & Related papers (2023-10-10T23:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.