Deep Learning-Powered Electrical Brain Signals Analysis: Advancing Neurological Diagnostics
- URL: http://arxiv.org/abs/2502.17213v1
- Date: Mon, 24 Feb 2025 14:45:05 GMT
- Title: Deep Learning-Powered Electrical Brain Signals Analysis: Advancing Neurological Diagnostics
- Authors: Jiahe Li, Xin Chen, Fanqi Shen, Junru Chen, Yuxin Liu, Daoze Zhang, Zhizhang Yuan, Fang Zhao, Meng Li, Yang Yang,
- Abstract summary: Review systematically examines advances in deep learning approaches for EEG/iEEG-based neurological diagnostics.<n>We focus on applications across 7 neurological conditions using 46 datasets.<n>We propose a standardized benchmark for evaluating models across diverse datasets.
- Score: 13.196462537320595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neurological disorders represent significant global health challenges, driving the advancement of brain signal analysis methods. Scalp electroencephalography (EEG) and intracranial electroencephalography (iEEG) are widely used to diagnose and monitor neurological conditions. However, dataset heterogeneity and task variations pose challenges in developing robust deep learning solutions. This review systematically examines recent advances in deep learning approaches for EEG/iEEG-based neurological diagnostics, focusing on applications across 7 neurological conditions using 46 datasets. We explore trends in data utilization, model design, and task-specific adaptations, highlighting the importance of pre-trained multi-task models for scalable, generalizable solutions. To advance research, we propose a standardized benchmark for evaluating models across diverse datasets to enhance reproducibility. This survey emphasizes how recent innovations can transform neurological diagnostics and enable the development of intelligent, adaptable healthcare solutions.
Related papers
- Brain-Computer Interfaces for Emotional Regulation in Patients with Various Disorders [0.0]
The research focuses on the development of a novel neural network algorithm for understanding EEG data.
The data analysis reveals promising results, as the algorithm is able to successfully classify emotional states with a high degree of accuracy.
This suggests that EEG-based BCIs have the potential to be a valuable tool in aiding individuals with a range of neurological and physiological disorders in recognizing and regulating their emotions.
arXiv Detail & Related papers (2024-11-22T01:57:14Z) - Parkinson's Disease Detection from Resting State EEG using Multi-Head Graph Structure Learning with Gradient Weighted Graph Attention Explanations [9.544065991313062]
We propose a novel graph neural network (GNN) technique for explainable Parkinson's disease (PD) detection using resting state EEG.
We employ structured global convolutions with contrastive learning to better model complex features with limited data.
We developed and evaluated our method using the UC San Diego Parkinson's disease EEG dataset, and achieved 69.40% detection accuracy in subject-wise leave-one-out cross-validation.
arXiv Detail & Related papers (2024-08-01T20:54:33Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.<n>As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.<n>The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Promises and pitfalls of deep neural networks in neuroimaging-based
psychiatric research [0.9449650062296824]
Deep neural networks and in particular convolutional neural networks have advanced to a powerful tool in medical imaging.
Here, we first give an introduction into methodological key concepts and resulting methodological promises.
After reviewing recent applications within neuroimaging-based psychiatric research, we discuss current challenges.
arXiv Detail & Related papers (2023-01-20T12:05:59Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Applications of Generative Adversarial Networks in Neuroimaging and
Clinical Neuroscience [4.394368629380544]
Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields.
GANs have shown enhanced capabilities in capturing spatially complex, nonlinear, and potentially subtle disease effects.
This review appraises the existing literature on the applications of GANs in imaging studies of various neurological conditions.
arXiv Detail & Related papers (2022-06-14T18:10:00Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.