論文の概要: Stabilizing PDE--ML Coupled System
- arxiv url: http://arxiv.org/abs/2506.19274v1
- Date: Tue, 24 Jun 2025 03:09:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.4639
- Title: Stabilizing PDE--ML Coupled System
- Title(参考訳): PDE-ML結合系の安定化
- Authors: Saad Qadeer, Panos Stinis, Hui Wan,
- Abstract要約: 大規模PDEシステムを用いたマシンリアントサロゲートの使用の長期的障害は,数値解法における不安定性の開始である。
本稿では,より複雑なシステムを実現する上で有効な,プロトタイプ問題と洞察の抽出について述べる。
- 参考スコア(独自算出の注目度): 2.4485090184193825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A long-standing obstacle in the use of machine-learnt surrogates with larger PDE systems is the onset of instabilities when solved numerically. Efforts towards ameliorating these have mostly concentrated on improving the accuracy of the surrogates or imbuing them with additional structure, and have garnered limited success. In this article, we study a prototype problem and draw insights that can help with more complex systems. In particular, we focus on a viscous Burgers'-ML system and, after identifying the cause of the instabilities, prescribe strategies to stabilize the coupled system. To improve the accuracy of the stabilized system, we next explore methods based on the Mori--Zwanzig formalism.
- Abstract(参考訳): 大規模PDEシステムを用いたマシンリアントサロゲートの使用の長期的障害は,数値解法における不安定性の開始である。
これらの改善への取り組みは、主にサロゲートの精度の向上や追加構造を付与することに集中しており、成功は限られている。
本稿では,より複雑なシステムを支援するためのプロトタイプ問題について検討し,考察する。
特に、粘性バーガース-MLシステムに注目し、不安定の原因を特定した後、結合系を安定化させるための戦略を規定する。
安定化システムの精度を向上させるため,森-ズワンジッヒ形式に基づく手法を探索する。
関連論文リスト
- Identifying Large-Scale Linear Parameter Varying Systems with Dynamic Mode Decomposition Methods [5.217516787417401]
本研究は,大規模LPVシステムの局所的およびグローバルな同定手法を開発する。
この方法は動的モード分解(DMD)にインスパイアされたDMD-LPVと呼ばれる。
実験により,提案手法は,全次元の同定を行うことなく,与えられた大規模システムの低次モデルを容易に同定できることが示唆された。
論文 参考訳(メタデータ) (2025-02-04T14:15:16Z) - Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
実世界の機械学習システムは、基礎となるデータ生成プロセスの分散シフトによって、モデルの性能劣化に遭遇することが多い。
概念のドリフト適応のような既存のシフトへのアプローチは、その理性に依存しない性質によって制限される。
我々はこれらの制限を克服するために自己修復機械学習(SHML)を提案する。
論文 参考訳(メタデータ) (2024-10-31T20:05:51Z) - Beyond the Kolmogorov Barrier: A Learnable Weighted Hybrid Autoencoder for Model Order Reduction [1.0742675209112622]
我々は,コルモゴロフ障壁を克服するために,学習可能な重み付きハイブリッドオートエンコーダを提案する。
トレーニングされたモデルは、他のモデルに比べて何千倍もシャープさが小さいことを実証的に見出した。
論文 参考訳(メタデータ) (2024-10-23T00:04:26Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
本稿では,効率的かつ高精度な不確実性定量化を深層学習に基づく代理モデルに統合する手法を提案する。
本手法は,フォワード問題と逆問題の両方に対して,堅牢かつ効率的な不確実性定量化機能を備えたディープラーニングに基づく代理モデルを提案する。
提案手法は, 長期予測を含むシナリオに適合し, 拡張された自己回帰ロールアウトに対する不確かさの伝播に優れる。
論文 参考訳(メタデータ) (2024-02-13T11:22:59Z) - Quality-Based Conditional Processing in Multi-Biometrics: Application to
Sensor Interoperability [63.05238390013457]
2007年のバイオセキュリティ・マルチモーダル・アセスメント・キャンペーンにおいて,ATVS-UAM融合手法を品質ベースで評価し,評価を行った。
我々のアプローチは線形ロジスティック回帰に基づいており、融合したスコアはログライクな比率になる傾向にある。
その結果,提案手法はルールベースの核融合方式よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-11-24T12:11:22Z) - Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings [33.25969141014772]
不確実性推定は、デプロイにおける機械学習システムの信頼性を強調する、広く研究されている方法である。
逐次および並列アンサンブル手法により,マルチモーダル設定におけるMLシステムの性能が向上した。
本研究では,不確かさを高く見積もるデータポイントに着目し,マルチモーダルセンシングのための不確実性認識促進手法を提案する。
論文 参考訳(メタデータ) (2021-04-21T18:28:13Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
未知の安定化線形力学系におけるモデルベース強化学習(RL)について検討する。
本研究では,環境を効果的に探索することで,基盤システムの高速安定化を証明できるアルゴリズムを提案する。
提案アルゴリズムはエージェント環境相互作用の時間ステップで$tildemathcalO(sqrtT)$ regretを達成した。
論文 参考訳(メタデータ) (2020-07-23T23:06:40Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
エンパワーメント原理は 直立位置での 力学系の教師なし安定化を可能にする
本稿では,ガウスチャネルとして動的システムのトレーニング可能な表現に基づく代替解を提案する。
提案手法は, サンプルの複雑さが低く, 訓練時より安定であり, エンパワーメント機能の本質的特性を有し, 画像からエンパワーメントを推定できることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:10:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。