論文の概要: Capturing Fine-Grained Alignments Improves 3D Affordance Detection
- arxiv url: http://arxiv.org/abs/2506.19312v1
- Date: Tue, 24 Jun 2025 04:58:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.495116
- Title: Capturing Fine-Grained Alignments Improves 3D Affordance Detection
- Title(参考訳): 細粒度アライメントの捕捉による3次元アフォーマンス検出の改善
- Authors: Junsei Tokumitsu, Yuiga Wada,
- Abstract要約: 本稿では,3次元点雲における空き地検出のための新しい手法であるLM-ADを提案する。
また、Affordance Query Module (AQM)を導入し、ポイントクラウドとテキスト間の微粒なアライメントを効率的にキャプチャする。
提案手法は,3次元AffordanceNetデータセット上でのUnion上での精度と平均断面積で既存手法よりも優れていた。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we address the challenge of affordance detection in 3D point clouds, a task that requires effectively capturing fine-grained alignments between point clouds and text. Existing methods often struggle to model such alignments, resulting in limited performance on standard benchmarks. A key limitation of these approaches is their reliance on simple cosine similarity between point cloud and text embeddings, which lacks the expressiveness needed for fine-grained reasoning. To address this limitation, we propose LM-AD, a novel method for affordance detection in 3D point clouds. Moreover, we introduce the Affordance Query Module (AQM), which efficiently captures fine-grained alignment between point clouds and text by leveraging a pretrained language model. We demonstrated that our method outperformed existing approaches in terms of accuracy and mean Intersection over Union on the 3D AffordanceNet dataset.
- Abstract(参考訳): 本研究では,3次元点群とテキスト間の微粒なアライメントを効果的に把握する作業である3次元点群における可視性検出の課題に対処する。
既存の手法はしばしばそのようなアライメントをモデル化するのに苦労し、標準ベンチマークではパフォーマンスが制限される。
これらのアプローチの鍵となる制限は、点クラウドとテキスト埋め込みの間の単純なコサイン類似性に依存していることである。
この制限に対処するために,3次元点雲における空き検出の新しい手法であるLM-ADを提案する。
さらに、事前訓練された言語モデルを利用して、ポイントクラウドとテキスト間の微粒なアライメントを効率的にキャプチャするAffordance Query Module (AQM)を導入する。
提案手法は, 3D AffordanceNetデータセット上でのUnion上での精度と平均断面積において, 既存の手法よりも優れていた。
関連論文リスト
- Multi-modality Affinity Inference for Weakly Supervised 3D Semantic
Segmentation [47.81638388980828]
本稿では,マルチモーダルポイント親和性推論モジュールを新たに導入した,シンプルで効果的なシーンレベルの弱教師付きポイントクラウドセグメンテーション法を提案する。
ScanNet と S3DIS のベンチマークでは,最先端の ScanNet と S3DIS のベンチマークでは 4% から 6% の mIoU を達成している。
論文 参考訳(メタデータ) (2023-12-27T14:01:35Z) - PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
時間的3次元物体検出を効率的に行うために,長期記憶が可能な点トラジェクトリ変換器を提案する。
私たちは、メモリバンクのストレージ要件を最小限に抑えるために、現在のフレームオブジェクトのポイントクラウドとその履歴トラジェクトリを入力として使用します。
大規模データセットに対する広範な実験を行い、我々のアプローチが最先端の手法に対してうまく機能することを実証した。
論文 参考訳(メタデータ) (2023-12-13T18:59:13Z) - Cross-modal and Cross-domain Knowledge Transfer for Label-free 3D
Segmentation [23.110443633049382]
本稿では,画像と点雲の関係を網羅的に探究することで,クロスモーダル・クロスドメイン適応に挑戦する新しい手法を提案する。
KITTI360 と GTA5 の知識を用いて,セマンティック KITTI 上の3次元クラウドセマンティックセマンティックセマンティックスセグメンテーションの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-09-19T14:29:57Z) - Exploring Active 3D Object Detection from a Generalization Perspective [58.597942380989245]
不確実性に基づくアクティブな学習ポリシーは、ポイントクラウドの情報性とボックスレベルのアノテーションコストの間のトレードオフのバランスを取れません。
冗長な3次元境界ボックスラベルの点群を階層的にフィルタリングするtextscCrbを提案する。
実験により,提案手法が既存のアクティブラーニング戦略より優れていることが示された。
論文 参考訳(メタデータ) (2023-01-23T02:43:03Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
弱制御点雲分割のための新しいDATモデル(textbfDual textbfAdaptive textbfTransformations)を提案する。
我々は,大規模S3DISデータセットとScanNet-V2データセットの2つの人気バックボーンを用いたDATモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-19T05:43:14Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
我々は、点方向軌跡(すなわち滑らかな曲線)の推定として問題を定式化する。
本稿では,学習した時間的一貫性の助けを借りて問題を解消する,エンドツーエンドのディープラーニングフレームワークであるIDEA-Netを提案する。
各種点群における本手法の有効性を実証し, 定量的かつ視覚的に, 最先端の手法に対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2022-03-22T10:14:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。