Image Segmentation using Chan-Vese Active Contours
- URL: http://arxiv.org/abs/2506.19344v1
- Date: Tue, 24 Jun 2025 06:16:56 GMT
- Title: Image Segmentation using Chan-Vese Active Contours
- Authors: Pranav Shenoy K. P,
- Abstract summary: This paper presents a comprehensive derivation and implementation of the Chan-Vese active contour model for image segmentation.<n>The model evolves contours based on regional intensity differences rather than image gradients, making it highly effective for segmenting noisy images or images with weak boundaries.<n> Experimental results on medical and synthetic images demonstrate accurate segmentation, robustness to noise, and superior performance compared to classical edge-based methods.
- Score: 0.24864093375172566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive derivation and implementation of the Chan-Vese active contour model for image segmentation. The model, derived from the Mumford-Shah variational framework, evolves contours based on regional intensity differences rather than image gradients, making it highly effective for segmenting noisy images or images with weak boundaries. We provide a rigorous mathematical derivation of the level set formulation, including detailed treatment of each energy term using the divergence theorem and curve evolution theory. The resulting algorithm is implemented in Python using finite difference methods with special care to numerical stability, including an upwind entropy scheme and curvature-based regularization. Experimental results on medical and synthetic images demonstrate accurate segmentation, robustness to noise, and superior performance compared to classical edge-based methods. This study confirms the suitability of the Chan-Vese model for complex segmentation tasks and highlights its potential for use in real-world imaging applications.
Related papers
- Score-Based Model for Low-Rank Tensor Recovery [49.158601255093416]
Low-rank tensor decompositions (TDs) provide an effective framework for multiway data analysis.<n>Traditional TD methods rely on predefined structural assumptions, such as CP or Tucker decompositions.<n>We propose a score-based model that eliminates the need for predefined structural or distributional assumptions.
arXiv Detail & Related papers (2025-06-27T15:05:37Z) - Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
This paper focuses on the development of a space-variant regularization model for solving an under-determined linear inverse problem.
The primary objective of the proposed model is to achieve a good balance between denoising and the preservation of fine details and edges.
A convolutional neural network is designed, to approximate both the ground truth image and its gradient using an elastic loss function in its training.
arXiv Detail & Related papers (2024-04-25T08:58:41Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - SAR image segmentation algorithms based on I-divergence-TV model [0.7458485930898191]
We propose a novel variational active contour model based on I-divergence-TV model to segment Synthetic aperture radar (SAR) images with multiplicative gamma noise.
The proposed model can efficiently stop the contours at weak or blurred edges, and can automatically detect the exterior and interior boundaries of images.
arXiv Detail & Related papers (2023-12-09T04:14:46Z) - Difference of Anisotropic and Isotropic TV for Segmentation under Blur
and Poisson Noise [2.6381163133447836]
We adopt a smoothing-and-thresholding (SaT) segmentation framework that finds awise-smooth solution, followed by $k-means to segment the image.
Specifically for the image smoothing step, we replace the maximum noise in the MumfordShah model with a maximum variation of anisotropic total variation (AITV) as a regularization.
Convergence analysis is provided to validate the efficacy of the scheme.
arXiv Detail & Related papers (2023-01-06T01:14:56Z) - A kinetic approach to consensus-based segmentation of biomedical images [39.58317527488534]
We apply a kinetic version of a bounded confidence consensus model to biomedical segmentation problems.
The large time behavior of the system is then computed with the aid of a surrogate Fokker-Planck approach.
We minimize the introduced segmentation metric for a relevant set of 2D gray-scale images.
arXiv Detail & Related papers (2022-11-08T09:54:34Z) - Saliency-Driven Active Contour Model for Image Segmentation [2.8348950186890467]
We propose a novel model that uses the advantages of a saliency map with local image information (LIF) and overcomes the drawbacks of previous models.
The proposed model is driven by a saliency map of an image and the local image information to enhance the progress of the active contour models.
arXiv Detail & Related papers (2022-05-23T06:02:52Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring [66.91879314310842]
We propose an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features.
A multi-scale cascaded feature refinement module then predicts the deblurred image from the deconvolved deep features.
We show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts and quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin.
arXiv Detail & Related papers (2021-03-18T00:38:11Z) - A Weighted Difference of Anisotropic and Isotropic Total Variation for
Relaxed Mumford-Shah Color and Multiphase Image Segmentation [2.6381163133447836]
We present a class of piecewise-constant image segmentation models that incorporate a difference of anisotropic and isotropic total variation.
In addition, a generalization to color image segmentation is discussed.
arXiv Detail & Related papers (2020-05-09T09:35:44Z) - Understanding Integrated Gradients with SmoothTaylor for Deep Neural
Network Attribution [70.78655569298923]
Integrated Gradients as an attribution method for deep neural network models offers simple implementability.
It suffers from noisiness of explanations which affects the ease of interpretability.
The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method.
arXiv Detail & Related papers (2020-04-22T10:43:19Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.