Learning to Disentangle Latent Reasoning Rules with Language VAEs: A Systematic Study
- URL: http://arxiv.org/abs/2506.19418v1
- Date: Tue, 24 Jun 2025 08:38:03 GMT
- Title: Learning to Disentangle Latent Reasoning Rules with Language VAEs: A Systematic Study
- Authors: Yingji Zhang, Marco Valentino, Danilo S. Carvalho, André Freitas,
- Abstract summary: This work investigates how reasoning rules can be explicitly embedded and memorised within language models.<n>We propose a complete pipeline for learning reasoning rules within Transformer-based language VAEs.
- Score: 13.59688284637146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating explicit reasoning rules within the latent space of language models (LMs) offers a promising pathway to enhance generalisation, interpretability, and controllability. While current Transformer-based language models have shown strong performance on Natural Language Inference (NLI) tasks, they often rely on memorisation rather than rule-based inference. This work investigates how reasoning rules can be explicitly embedded and memorised within the LMs through Language Variational Autoencoders (VAEs). We propose a complete pipeline for learning reasoning rules within Transformer-based language VAEs. This pipeline encompasses three rule-based reasoning tasks, a supporting theoretical framework, and a practical end-to-end architecture. The experiment illustrates the following findings: Disentangled reasoning: Under explicit signal supervision, reasoning rules - viewed as functional mappings - can be disentangled within the encoder's parametric space. This separation results in distinct clustering of rules in the output feature space. Prior knowledge injection: injecting reasoning information into the Query enables the model to more effectively retrieve the stored value Value from memory based on Key. This approach offers a simple method for integrating prior knowledge into decoder-only language models. Performance bottleneck: In mathematical reasoning tasks using Qwen2.5(0.5B), increasing sample count doesn't improve performance beyond a point. Moreover, ffn layers are better than attention layers at preserving the separation of reasoning rules in the model's parameters.
Related papers
- The Unreasonable Effectiveness of Model Merging for Cross-Lingual Transfer in LLMs [54.59207567677249]
Large language models (LLMs) still struggle across tasks outside of high-resource languages.<n>In this work, we investigate cross-lingual transfer to lower-resource languages where task-specific post-training data is scarce.
arXiv Detail & Related papers (2025-05-23T20:28:31Z) - LINGOLY-TOO: Disentangling Reasoning from Knowledge with Templatised Orthographic Obfuscation [1.2576388595811496]
We introduce LINGOLY-TOO, a challenging reasoning benchmark grounded in natural language.<n>We permute reasoning problems written in real languages to generate numerous question variations.<n>Experiments and analyses show that models can circumvent reasoning and answer from prior knowledge.
arXiv Detail & Related papers (2025-03-04T19:57:47Z) - Beyond Words: A Latent Memory Approach to Internal Reasoning in LLMs [0.0]
We propose a framework that integrates implicit mental representations into the internal reasoning processes of large language models.<n>Preliminary experiments indicate that incorporating an Implicit Memory Module into a simple GPT model yields a reduction of between 35% and 57% in final training loss.
arXiv Detail & Related papers (2025-02-28T13:22:29Z) - General Intelligence Requires Reward-based Pretraining [19.90997698310839]
Large Language Models (LLMs) have demonstrated impressive real-world utility.<n>But their ability to reason adaptively and robustly remains fragile.<n>We propose disangling knowledge and reasoning through three key directions.
arXiv Detail & Related papers (2025-02-26T18:51:12Z) - LatentQA: Teaching LLMs to Decode Activations Into Natural Language [72.87064562349742]
We introduce LatentQA, the task of answering open-ended questions about model activations in natural language.<n>We propose Latent Interpretation Tuning (LIT), which finetunes a decoder LLM on a dataset of activations and associated question-answer pairs.<n>Our decoder also specifies a differentiable loss that we use to control models, such as debiasing models on stereotyped sentences and controlling the sentiment of generations.
arXiv Detail & Related papers (2024-12-11T18:59:33Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
We propose a novel framework that utilizes large language models (LLMs) to identify effective feature generation rules.
We use decision trees to convey this reasoning information, as they can be easily represented in natural language.
OCTree consistently enhances the performance of various prediction models across diverse benchmarks.
arXiv Detail & Related papers (2024-06-12T08:31:34Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks.
However, their mastery of underlying inferential rules still falls short of human capabilities.
We propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic.
arXiv Detail & Related papers (2024-02-18T03:38:51Z) - APOLLO: A Simple Approach for Adaptive Pretraining of Language Models
for Logical Reasoning [73.3035118224719]
We propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities.
APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
arXiv Detail & Related papers (2022-12-19T07:40:02Z) - Offline RL for Natural Language Generation with Implicit Language Q
Learning [87.76695816348027]
Large language models can be inconsistent when it comes to completing user specified tasks.
We propose a novel RL method, that combines both the flexible utility framework of RL with the ability of supervised learning.
In addition to empirically validating ILQL, we present a detailed empirical analysis situations where offline RL can be useful in natural language generation settings.
arXiv Detail & Related papers (2022-06-05T18:38:42Z) - RuleBert: Teaching Soft Rules to Pre-trained Language Models [21.69870624809201]
We introduce a classification task where, given facts and soft rules, the PLM should return a prediction with a probability for a given hypothesis.
We propose a revised loss function that enables the PLM to learn how to predict precise probabilities for the task.
Our evaluation results show that the resulting fine-tuned models achieve very high performance, even on logical rules that were unseen at training.
arXiv Detail & Related papers (2021-09-24T16:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.