論文の概要: Iterative Quantum Feature Maps
- arxiv url: http://arxiv.org/abs/2506.19461v1
- Date: Tue, 24 Jun 2025 09:40:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.573511
- Title: Iterative Quantum Feature Maps
- Title(参考訳): 反復量子特徴写像
- Authors: Nasa Matsumoto, Quoc Hoan Tran, Koki Chinzei, Yasuhiro Endo, Hirotaka Oshima,
- Abstract要約: 量子回路を量子特徴写像(QFM)として活用する量子機械学習モデルは、学習タスクにおける表現力の向上によって認識される。
実際の量子ハードウェアに深いQFMをデプロイすることは、回路ノイズとハードウェアの制約のため、依然として難しい。
提案するIterative Quantum Feature Map (IQFMs)は,浅部QFMを古典的に計算された拡張重みで反復的に接続することにより,深いアーキテクチャを構築するハイブリッド量子古典的フレームワークである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning models that leverage quantum circuits as quantum feature maps (QFMs) are recognized for their enhanced expressive power in learning tasks. Such models have demonstrated rigorous end-to-end quantum speedups for specific families of classification problems. However, deploying deep QFMs on real quantum hardware remains challenging due to circuit noise and hardware constraints. Additionally, variational quantum algorithms often suffer from computational bottlenecks, particularly in accurate gradient estimation, which significantly increases quantum resource demands during training. We propose Iterative Quantum Feature Maps (IQFMs), a hybrid quantum-classical framework that constructs a deep architecture by iteratively connecting shallow QFMs with classically computed augmentation weights. By incorporating contrastive learning and a layer-wise training mechanism, IQFMs effectively reduces quantum runtime and mitigates noise-induced degradation. In tasks involving noisy quantum data, numerical experiments show that IQFMs outperforms quantum convolutional neural networks, without requiring the optimization of variational quantum parameters. Even for a typical classical image classification benchmark, a carefully designed IQFMs achieves performance comparable to that of classical neural networks. This framework presents a promising path to address current limitations and harness the full potential of quantum-enhanced machine learning.
- Abstract(参考訳): 量子回路を量子特徴写像(QFM)として活用する量子機械学習モデルは、学習タスクにおける表現力の向上によって認識される。
このようなモデルは、特定の分類問題の族に対する厳密なエンドツーエンドの量子スピードアップを証明している。
しかし、実際の量子ハードウェアに深いQFMをデプロイすることは、回路ノイズとハードウェアの制約のため、依然として困難である。
さらに、変分量子アルゴリズムは、特に正確な勾配推定において計算のボトルネックに悩まされ、トレーニング中に量子リソースの要求が著しく増加する。
提案するIterative Quantum Feature Map (IQFMs)は,浅部QFMを古典的に計算された拡張重みで反復的に接続することにより,深いアーキテクチャを構築するハイブリッド量子古典的フレームワークである。
対照的な学習と階層的なトレーニング機構を取り入れることで、IQFMは量子ランタイムを効果的に削減し、ノイズによる劣化を軽減する。
ノイズの多い量子データを含むタスクにおいて、数値実験により、IQFMは変分量子パラメータの最適化を必要とせず、量子畳み込みニューラルネットワークより優れていることが示された。
典型的な古典的画像分類ベンチマークであっても、慎重に設計されたIQFMは古典的ニューラルネットワークに匹敵する性能を達成する。
このフレームワークは、現在の制限に対処し、量子強化機械学習の潜在能力を最大限活用するための、有望な道を示す。
関連論文リスト
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
量子ニューラルネットワーク(QNN)は、経験的にも理論的にも有望であることを示している。
ハードウェアの欠陥と量子デバイスへの限られたアクセスは、実用的な課題となる。
微分可能最適化を用いた自動解法を提案する。
論文 参考訳(メタデータ) (2025-05-13T19:01:08Z) - Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
本稿では、新しい量子回路を生成するためにLayerDAGフレームワークを利用する拡散型アルゴリズムを提案する。
本結果は,提案モデルが100%有効な量子回路出力を連続的に生成することを示す。
論文 参考訳(メタデータ) (2025-04-29T14:10:10Z) - Quantum autoencoders for image classification [0.0]
量子オートエンコーダ(QAE)は、パラメータチューニングのみに古典的な最適化を利用する。
本研究では,QAEを用いた新しい画像分類手法を提案する。
論文 参考訳(メタデータ) (2025-02-21T07:13:38Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。