論文の概要: MuBench: Assessment of Multilingual Capabilities of Large Language Models Across 61 Languages
- arxiv url: http://arxiv.org/abs/2506.19468v1
- Date: Tue, 24 Jun 2025 09:53:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.579528
- Title: MuBench: Assessment of Multilingual Capabilities of Large Language Models Across 61 Languages
- Title(参考訳): MuBench:61言語にわたる大規模言語モデルの多言語能力の評価
- Authors: Wenhan Han, Yifan Zhang, Zhixun Chen, Binbin Liu, Haobin Lin, Bingni Zhang, Taifeng Wang, Mykola Pechenizkiy, Meng Fang, Yin Zheng,
- Abstract要約: MuBenchは61の言語をカバーし、幅広い機能を評価するベンチマークです。
我々は、最先端の多言語LLMを評価し、請求項と実際の言語カバレッジとの間に顕著なギャップを見いだした。
- 参考スコア(独自算出の注目度): 33.450081592217074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multilingual large language models (LLMs) are advancing rapidly, with new models frequently claiming support for an increasing number of languages. However, existing evaluation datasets are limited and lack cross-lingual alignment, leaving assessments of multilingual capabilities fragmented in both language and skill coverage. To address this, we introduce MuBench, a benchmark covering 61 languages and evaluating a broad range of capabilities. We evaluate several state-of-the-art multilingual LLMs and find notable gaps between claimed and actual language coverage, particularly a persistent performance disparity between English and low-resource languages. Leveraging MuBench's alignment, we propose Multilingual Consistency (MLC) as a complementary metric to accuracy for analyzing performance bottlenecks and guiding model improvement. Finally, we pretrain a suite of 1.2B-parameter models on English and Chinese with 500B tokens, varying language ratios and parallel data proportions to investigate cross-lingual transfer dynamics.
- Abstract(参考訳): 多言語大言語モデル(LLM)は急速に進歩しており、新しいモデルでは言語の増加をサポートすることが頻繁に主張されている。
しかし、既存の評価データセットは限定的であり、言語間アライメントが欠如しており、多言語能力の評価は言語とスキルのカバレッジの両方で断片化されている。
これを解決するために、61言語をカバーするベンチマークであるMuBenchを導入し、幅広い機能を評価する。
我々は、最先端の多言語LLMを評価し、請求項と実際の言語カバレッジの間に顕著なギャップ、特に、英語と低リソース言語間の持続的なパフォーマンス格差を見出した。
MuBenchのアライメントを活用することで,性能ボトルネックの解析とモデル改善の導出のための補完指標として,MLC(Multilingual Consistency)を提案する。
最後に,500Bトークン,異なる言語比,並列データ比を用いて,英語と中国語の1.2Bパラメータモデルスイートを事前学習し,言語間移動のダイナミクスについて検討する。
関連論文リスト
- Cross-Lingual Pitfalls: Automatic Probing Cross-Lingual Weakness of Multilingual Large Language Models [55.14276067678253]
本稿では,Large Language Models (LLMs) における言語間関係の弱点を効率的に同定するための新しい手法を提案する。
この手法を用いて16言語で6,000以上のバイリンガルペアからなる新しいデータセットを構築し、最先端のモデルにおいても弱点を明らかにする効果を実証した。
さらに,言語的類似性と言語間の弱点との関係について検討し,言語的関連言語が類似した演奏パターンを共有することを明らかにした。
論文 参考訳(メタデータ) (2025-05-24T12:31:27Z) - MUG-Eval: A Proxy Evaluation Framework for Multilingual Generation Capabilities in Any Language [16.21019515431378]
本稿では,大規模言語モデルの多言語生成能力を評価する新しいフレームワークMUG-Evalを提案する。
既存のベンチマークを会話タスクに変換し、それらのタスクに対するLCMの精度を測定します。
高、中、低リソースのカテゴリにまたがる30言語にわたる8つのLLMを評価し、MUG-Evalが確立されたベンチマークと強く相関していることを見出した。
論文 参考訳(メタデータ) (2025-05-20T14:14:00Z) - MMLU-ProX: A Multilingual Benchmark for Advanced Large Language Model Evaluation [86.7047714187813]
MMLU-ProXは29の言語をカバーするベンチマークであり、英語のベンチマーク上に構築されている。
それぞれの言語バージョンは11,829の同一の質問で構成されており、直接言語間比較を可能にする。
効率的な評価ニーズを満たすため,言語毎の質問数は658件である。
論文 参考訳(メタデータ) (2025-03-13T15:59:20Z) - EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models [50.459861376459656]
EMMA-500は546言語にわたるテキストで継続訓練された大規模多言語言語モデルである。
本結果は,大規模言語モデルの言語能力拡大における継続事前学習の有効性を強調した。
論文 参考訳(メタデータ) (2024-09-26T14:40:45Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
本稿では, マルチリンガル数学推論 (xMR) LLM の探索と学習の先駆者である。
我々は10の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
翻訳を利用して、10個の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
論文 参考訳(メタデータ) (2023-10-31T08:09:20Z) - Investigating the Translation Performance of a Large Multilingual
Language Model: the Case of BLOOM [8.858671209228536]
複数のデータセットにまたがる機械翻訳性能を評価することで,BLOOMの多言語能力に着目する。
本稿では, 素早い設計, モデルサイズ, 言語間移動, 帰納的文脈の利用など, 様々な側面について検討する。
論文 参考訳(メタデータ) (2023-03-03T13:23:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。