Conservative quantum offline model-based optimization
- URL: http://arxiv.org/abs/2506.19714v1
- Date: Tue, 24 Jun 2025 15:20:17 GMT
- Title: Conservative quantum offline model-based optimization
- Authors: Kristian Sotirov, Annie E. Paine, Savvas Varsamopoulos, Antonio A. Gentile, Osvaldo Simeone,
- Abstract summary: offline model-based optimization (MBO) refers to the task of optimizing a black-box objective function using only a fixed set of prior input-output data.<n>Recent work has introduced quantum extremal learning (QEL), which leverages the expressive power of variational quantum circuits.<n>We propose integrating QEL with conservative objective models (COM) - a regularization technique aimed at ensuring cautious predictions on out-of-distribution inputs.
- Score: 27.370110767908166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline model-based optimization (MBO) refers to the task of optimizing a black-box objective function using only a fixed set of prior input-output data, without any active experimentation. Recent work has introduced quantum extremal learning (QEL), which leverages the expressive power of variational quantum circuits to learn accurate surrogate functions by training on a few data points. However, as widely studied in the classical machine learning literature, predictive models may incorrectly extrapolate objective values in unexplored regions, leading to the selection of overly optimistic solutions. In this paper, we propose integrating QEL with conservative objective models (COM) - a regularization technique aimed at ensuring cautious predictions on out-of-distribution inputs. The resulting hybrid algorithm, COM-QEL, builds on the expressive power of quantum neural networks while safeguarding generalization via conservative modeling. Empirical results on benchmark optimization tasks demonstrate that COM-QEL reliably finds solutions with higher true objective values compared to the original QEL, validating its superiority for offline design problems.
Related papers
- Selective Feature Re-Encoded Quantum Convolutional Neural Network with Joint Optimization for Image Classification [3.8876018618878585]
Quantum convolutional neural networks (QCNNs) have demonstrated promising results in classifying both quantum and classical data.<n>This study proposes a novel strategy to enhance feature processing and a QCNN architecture for improved classification accuracy.
arXiv Detail & Related papers (2025-07-02T18:51:56Z) - Online Decision-Focused Learning [63.83903681295497]
Decision-focused learning (DFL) is an increasingly popular paradigm for training predictive models whose outputs are used in decision-making tasks.<n>We investigate DFL in dynamic environments where the objective function does not evolve over time.<n>We establish bounds on the expected dynamic regret, both when decision space is a simplex and when it is a general bounded convex polytope.
arXiv Detail & Related papers (2025-05-19T10:40:30Z) - A Preliminary Investigation on the Usage of Quantum Approximate Optimization Algorithms for Test Case Selection [2.1929683225837078]
This work envisions the usage of Quantum Approximate Optimization Algorithms (QAOAs) for test case selection.<n>QAOAs merge the potential of gate-based quantum machines with the optimization capabilities of the adiabatic evolution.<n>Our results show that QAOAs perform better than the baseline algorithms in effectiveness while being comparable to SelectQA in terms of efficiency.
arXiv Detail & Related papers (2025-04-26T15:38:01Z) - Offline Model-Based Optimization: Comprehensive Review [61.91350077539443]
offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets.<n>Recent advances in model-based optimization have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models.<n>Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review.
arXiv Detail & Related papers (2025-03-21T16:35:02Z) - Automated Computational Energy Minimization of ML Algorithms using Constrained Bayesian Optimization [1.2891210250935148]
We evaluate Constrained Bayesian Optimization (CBO) with the primary objective of minimizing energy consumption.
We demonstrate that CBO lower energy consumption without compromising the predictive performance of ML models.
arXiv Detail & Related papers (2024-07-08T09:49:38Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
This paper considers the problem of offline optimization, where the objective function is unknown except for a collection of offline" data examples.
Instead of learning and then optimizing the unknown objective function, we take on a less intuitive but more direct view that optimization can be thought of as a process of sampling from a generative model.
arXiv Detail & Related papers (2024-01-04T01:32:50Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.