Selective Feature Re-Encoded Quantum Convolutional Neural Network with Joint Optimization for Image Classification
- URL: http://arxiv.org/abs/2507.02086v1
- Date: Wed, 02 Jul 2025 18:51:56 GMT
- Title: Selective Feature Re-Encoded Quantum Convolutional Neural Network with Joint Optimization for Image Classification
- Authors: Shaswata Mahernob Sarkar, Sheikh Iftekhar Ahmed, Jishnu Mahmud, Shaikh Anowarul Fattah, Gaurav Sharma,
- Abstract summary: Quantum convolutional neural networks (QCNNs) have demonstrated promising results in classifying both quantum and classical data.<n>This study proposes a novel strategy to enhance feature processing and a QCNN architecture for improved classification accuracy.
- Score: 3.8876018618878585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Machine Learning (QML) has seen significant advancements, driven by recent improvements in Noisy Intermediate-Scale Quantum (NISQ) devices. Leveraging quantum principles such as entanglement and superposition, quantum convolutional neural networks (QCNNs) have demonstrated promising results in classifying both quantum and classical data. This study examines QCNNs in the context of image classification and proposes a novel strategy to enhance feature processing and a QCNN architecture for improved classification accuracy. First, a selective feature re-encoding strategy is proposed, which directs the quantum circuits to prioritize the most informative features, thereby effectively navigating the crucial regions of the Hilbert space to find the optimal solution space. Secondly, a novel parallel-mode QCNN architecture is designed to simultaneously incorporate features extracted by two classical methods, Principal Component Analysis (PCA) and Autoencoders, within a unified training scheme. The joint optimization involved in the training process allows the QCNN to benefit from complementary feature representations, enabling better mutual readjustment of model parameters. To assess these methodologies, comprehensive experiments have been performed using the widely used MNIST and Fashion MNIST datasets for binary classification tasks. Experimental findings reveal that the selective feature re-encoding method significantly improves the quantum circuit's feature processing capability and performance. Furthermore, the jointly optimized parallel QCNN architecture consistently outperforms the individual QCNN models and the traditional ensemble approach involving independent learning followed by decision fusion, confirming its superior accuracy and generalization capabilities.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Research of the Variational Shadow Quantum Circuit Based on the Whale Optimization Algorithm in Image Classification [5.476164902473674]
This paper proposes an improved Variable Split Shadow Quantum Circuit (VSQC) model based on the Whale Optimization Algorithm.<n>In this paper, we use different localized shadow circuit VSQC models to achieve the binary classification task on the MNIST dataset.<n>Our design of strongly entangled shadow circuits performs the best in terms of classification accuracy.
arXiv Detail & Related papers (2025-05-15T06:14:02Z) - Optimizer-Dependent Generalization Bound for Quantum Neural Networks [5.641998714611475]
Quantum neural networks (QNNs) play a pivotal role in addressing complex tasks within quantum machine learning.<n>We investigate the generalization properties of QNNs through the lens of learning algorithm stability.<n>Our work offers practical insights for applying QNNs in quantum machine learning.
arXiv Detail & Related papers (2025-01-27T17:22:34Z) - Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement [0.0]
We propose a novel architecture, which incorporates pointwise convolution within a quantum neural network framework.<n>By using quantum circuits, we map data to a higher-dimensional space, capturing more complex feature relationships.<n>In experiments, we applied the quantum pointwise convolution layer to classification tasks on the FashionMNIST and CIFAR10 datasets.
arXiv Detail & Related papers (2024-12-02T08:03:59Z) - Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
We introduce a novel architecture termed Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN)
The proposed PPF-QSNN outperforms both the existing spiking neural network and the serial quantum neural network across metrics such as accuracy, loss, and robustness.
This study lays the groundwork for the advancement and application of quantum advantage in artificial intelligent computations.
arXiv Detail & Related papers (2024-04-01T10:35:35Z) - The role of data embedding in equivariant quantum convolutional neural
networks [2.255961793913651]
We investigate the role of classical-to-quantum embedding on the performance of equivariant quantum neural networks (EQNNs)
We numerically compare the classification accuracy of EQCNNs with three different basis-permuted amplitude embeddings to the one obtained from a non-equivariant quantum convolutional neural network (QCNN)
arXiv Detail & Related papers (2023-12-20T18:25:15Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
We present a novel framework for transferring knowledge from classical convolutional neural networks (CNNs) to quantum neural networks (QNNs)<n>We conduct extensive experiments using two parameterized quantum circuits (PQCs) with 4 and 8 qubits on MNIST, Fashion MNIST, and CIFAR10 datasets.<n>Our results establish a promising paradigm for bridging classical deep learning and emerging quantum computing, paving the way for more powerful, resource conscious models in quantum machine intelligence.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network.
The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case.
The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts.
arXiv Detail & Related papers (2021-09-20T12:41:50Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.