論文の概要: NeRF-based CBCT Reconstruction needs Normalization and Initialization
- arxiv url: http://arxiv.org/abs/2506.19742v1
- Date: Tue, 24 Jun 2025 16:01:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.710829
- Title: NeRF-based CBCT Reconstruction needs Normalization and Initialization
- Title(参考訳): NeRFを用いたCBCT再構成は正規化と初期化を必要とする
- Authors: Zhuowei Xu, Han Li, Dai Sun, Zhicheng Li, Yujia Li, Qingpeng Kong, Zhiwei Cheng, Nassir Navab, S. Kevin Zhou,
- Abstract要約: NeRFベースの手法は、ハッシュエンコーダとニューラルネットワークという2つの主要なコンポーネント間の局所的な訓練ミスマッチに悩まされる。
特徴整合性を高め、ミスマッチを緩和する正規化ハッシュを導入する。
ニューラルネットワークは早期トレーニング中に安定性が向上し、より高速な収束と再構築性能が向上する。
- 参考スコア(独自算出の注目度): 53.58395475423445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cone Beam Computed Tomography (CBCT) is widely used in medical imaging. However, the limited number and intensity of X-ray projections make reconstruction an ill-posed problem with severe artifacts. NeRF-based methods have achieved great success in this task. However, they suffer from a local-global training mismatch between their two key components: the hash encoder and the neural network. Specifically, in each training step, only a subset of the hash encoder's parameters is used (local sparse), whereas all parameters in the neural network participate (global dense). Consequently, hash features generated in each step are highly misaligned, as they come from different subsets of the hash encoder. These misalignments from different training steps are then fed into the neural network, causing repeated inconsistent global updates in training, which leads to unstable training, slower convergence, and degraded reconstruction quality. Aiming to alleviate the impact of this local-global optimization mismatch, we introduce a Normalized Hash Encoder, which enhances feature consistency and mitigates the mismatch. Additionally, we propose a Mapping Consistency Initialization(MCI) strategy that initializes the neural network before training by leveraging the global mapping property from a well-trained model. The initialized neural network exhibits improved stability during early training, enabling faster convergence and enhanced reconstruction performance. Our method is simple yet effective, requiring only a few lines of code while substantially improving training efficiency on 128 CT cases collected from 4 different datasets, covering 7 distinct anatomical regions.
- Abstract(参考訳): コーンビームCT(CBCT)は医用画像に広く用いられている。
しかしながら、X線プロジェクションの限られた数と強度は、厳密なアーティファクトの再構成を不適切な問題にしている。
この課題において、NeRFベースの手法は大きな成功を収めた。
しかし、彼らは2つの主要なコンポーネントであるハッシュエンコーダとニューラルネットワークの局所的な訓練ミスマッチに悩まされている。
具体的には、各トレーニングステップでは、ハッシュエンコーダのパラメータのサブセット(局所スパース)のみが使用され、ニューラルネットワーク内のすべてのパラメータ(グロバル密度)が関与する。
したがって、各ステップで生成されたハッシュ機能は、ハッシュエンコーダの異なるサブセットに由来するため、非常に不一致である。
異なるトレーニングステップからのこれらのミスアライメントがニューラルネットワークに入力され、トレーニングにおける不整合なグローバルアップデートが繰り返され、不安定なトレーニング、収束の緩やかさ、再構築品質が低下する。
この局所的な最適化ミスマッチの影響を軽減するため,機能一貫性を高め,ミスマッチを緩和する正規化ハッシュエンコーダを導入する。
さらに、訓練前のニューラルネットワークを初期化するためのマッピング一貫性初期化(MCI)戦略を提案する。
初期化ニューラルネットワークは、早期トレーニング中に安定性が向上し、より高速な収束と再構築性能が向上する。
本手法は単純だが有効であり, 数行のコードしか必要とせず, 異なる7つの解剖学的領域を含む4つのデータセットから収集した128個のCT症例の訓練効率を大幅に向上する。
関連論文リスト
- Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Provable Acceleration of Nesterov's Accelerated Gradient Method over Heavy Ball Method in Training Over-Parameterized Neural Networks [12.475834086073734]
1次勾配法はニューラルネットワークのトレーニングに広く用いられている。
近年の研究では、最初のニューラルオーダー法が世界最小収束を達成することができることが証明されている。
論文 参考訳(メタデータ) (2022-08-08T07:13:26Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
本稿では,トレーニング中にのみ第2のネットワークを導入するRSNNの教師付きトレーニング手順を提案する。
提案したトレーニング手順は、リカレント層とリードアウト層の両方のターゲットを生成することで構成される。
本研究では,8つの力学系をモデル化するためのフルFORCEトレーニング手法の性能向上とノイズ堅牢性を示す。
論文 参考訳(メタデータ) (2022-05-26T19:01:19Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Enabling Incremental Training with Forward Pass for Edge Devices [0.0]
進化戦略(ES)を用いてネットワークを部分的に再トレーニングし,エラー発生後に変更に適応し,回復できるようにする手法を提案する。
この技術は、バックプロパゲーションを必要とせず、最小限のリソースオーバーヘッドで推論専用ハードウェアのトレーニングを可能にする。
論文 参考訳(メタデータ) (2021-03-25T17:43:04Z) - Training Sparse Neural Networks using Compressed Sensing [13.84396596420605]
本研究では,プレニングとトレーニングを1ステップに組み合わせた圧縮センシングに基づく新しい手法の開発と試験を行う。
具体的には、トレーニング中の重みを適応的に重み付けした$ell1$のペナルティを利用して、スパースニューラルネットワークをトレーニングするために、正規化二重平均化(RDA)アルゴリズムの一般化と組み合わせる。
論文 参考訳(メタデータ) (2020-08-21T19:35:54Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
グラフ表現学習は、大規模に高品質な候補探索をサポートすることに多くの注目を集めている。
ユーザ・イテム相互作用ネットワークにおけるオブジェクトの埋め込みベクトルの学習の有効性にもかかわらず、連続的な埋め込み空間におけるユーザの好みを推測する計算コストは膨大である。
連続的かつ離散的なコードとを協調的に学習するための,単純かつ効果的な離散表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-04T06:59:56Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。